Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\frac { 1 }{ \pi  } \int _{ -2 }^{ 2 }{ \frac { 1 }{ 4+{ x }^{ 2 } } dx= } $$

  • Question 2
    1 / -0

    $$\overset { -5 }{ \underset { -4 }{ \int }  } e^(x + 5)^2 dx + 3  \overset { 2/3}{ \underset { 1/3 }{ \int }  } e^9(9(x-2/3)^2$$ dx is equal toi 

  • Question 3
    1 / -0

    For $$\displaystyle x\in \,R$$ let $$f(x)=|\sin\,x|$$ and $$g(x)=\int^x_0\,f(t)dt.$$ Let $$p(x)=g(x)-\dfrac{2}{\pi}x$$. Then

  • Question 4
    1 / -0

    The area of the region bounded by the lines $$x = 1, x = 2$$, and the curves $$x(y - e^x) = \sin x$$ and $$2xy = 2 \sin x + x^3$$ is 

  • Question 5
    1 / -0

    The value of the definite integral $$\displaystyle\int^1_0\dfrac{xdx}{(x^2+16)}$$ lies in the interval $$[a, b]$$. Then smallest such interval is?

  • Question 6
    1 / -0

    Let $$I=\overset{1}{\underset{0}{\int}}\dfrac{\sin x}{\sqrt x}dx$$ and $$J=\overset{1}{\underset{0}{\int}}\dfrac{\cos x}{\sqrt x}dx$$. Then which one of the following is true?

  • Question 7
    1 / -0

    $$\overset { 1 }{ \underset { -1 }{ \int }  } \dfrac{x^3+|x|+1}{x^2+2|x|+1}$$dx is equal to

  • Question 8
    1 / -0

    Let $$I_{1}=\int_{-2}^{2} \dfrac{x^{6}+3 x^{5}+7 x^{4}}{x^{4}+2} d x$$ and$$I_{2}=\int_{-3}^{1} \dfrac{2(x+1)^{2}+11(x+1)+14}{(x+1)^{4}+2} d x,$$ then the value of$$I_{1}+I_{2}$$ is

  • Question 9
    1 / -0

    If $$z=x+3i$$ then value of $$\displaystyle\int^4_2\left[arg\left|\dfrac{z-i}{z+i}\right|\right]dx$$, where $$[.]$$ denotes the greatest integer function, is?

  • Question 10
    1 / -0

    If $$I=\displaystyle\int^1_0\cos\left(2\cot^{-1}\sqrt{\left(\dfrac{1-x}{1+x}\right)}\right)dx$$ then?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now