Self Studies

Application of Integrals Test - 10

Result Self Studies

Application of Integrals Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the parabola $$(\mathrm{y}-2)^{2}=\mathrm{x}-1$$, the tangent to the parabola at the point $$(2,\ 3)$$ and the $$\mathrm{x}$$-axis is 

    Solution
    Equation of tangent at $$(2,3)$$ $$:$$   $$2y=x+4$$

    $$\displaystyle \int_{0}^{3}[(y-2)^{2}+1]-[2y-4] \text{ }dy$$

    $$=\displaystyle \int_{0}^{3}[(y-2)^{2}-2y+5]\text{ }dy$$

    $$=\left[\dfrac{(y-2)^{3}}{3}-y^{2}+5y\right]_{0}^{3}$$

    $$=9$$
  • Question 2
    1 / -0
    The area (in square units) of the region bounded by the curves $$y + 2x^2 = 0$$ and $$y + 3x^2 = 1$$, is equal to 
    Solution
    Solving both the equations we get point of intersection both the curves as $$(1,-2)$$ and $$(-1,-2)$$
    Thus required are is given by,
    $$\displaystyle A =\int_{-1}^{1}(1-3x^2-(-2x^2))dx=\cfrac{4}{3}$$

  • Question 3
    1 / -0
    The area (in sq. units) of the region $$\{(x, y):x \geq 0, x+y \leq 3, x^2 \leq 4y$$ and $$y\leq 1+\sqrt{x}\}$$ is.
    Solution
    $$C_1: x≥0$$
    $$C_2: x+y≤3$$
    $$C_3: x^2≤4y$$
    $$C_4: y≤1+\sqrt x$$

    Solving these curves, we get their intersection points as shown in the figure.
    Now, we have to find the area of the shaded region, which is formed using the constraint.
    $$Area = \displaystyle\int_0^1(1+\sqrt x) \ dx  + \int_1^2(3-x)\ dx - \int_0^2(x^2)\ dx$$
    $$\Rightarrow Area = \left[x+\cfrac23x^{3/2}\right]_0^1+[3x-x^2]_1^3 - \left[\cfrac{x^3}3\right]_0^2 = \cfrac52$$

  • Question 4
    1 / -0
    The area of the region described by $$ A= (x,y):x^{2}+y^{2}\leq 1$$ and $$ y^{2}\leq 1-x$$ is:
    Solution
    $$ A=\displaystyle \frac{1}{2}\times \pi +2\int_{0}^{1}\sqrt{1-x}dx$$
    $$ =\displaystyle \frac{\pi }{2}+\displaystyle \frac{4}{3}$$

  • Question 5
    1 / -0
    The parabolas $$y^{2}=4x$$ and $$x^{2}=4y$$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If $$S_{1},S_{2},S_{3}$$ are respectively the areas of these parts numbered from top to bottom(Example: $$S_1$$ is the area bounded by $$y=4$$ and $$x^{2}=4y$$ ); then $$S_{1},S_{2},S_{3}$$ is  
    Solution
    Since   $$y^{2} = 4x$$    and   $$x^{2} = 4y$$
    are  symmetric   about  the  line   y = x
    Now,  Area   bounded   between   $$y^{2} = 4x   and    y =x   $$   is
    $$\int_{0}^{4}\left ( 2\sqrt{x}  - x \right )dx$$
    $$ = \dfrac{8}{3}$$
    $$A_{s_{2}} = \dfrac{16}{3}$$          and
    $$A_{s_{1}} = A_{s_{3}} = \dfrac{16}{3}$$
    $$ A_{s_{1}}:A_{s_{2}}:A_{s_{3}} :: 1:1:1 $$
  • Question 6
    1 / -0
    The area of the region bounded by the curves $$x+2y^{2}=0$$ and $$x+3y^{2}=1$$ is equal to 
    Solution
    Solving the equations $$x+2{y}^{2}=0$$ and $$x+3{y}^{2}=1$$
    we get points of intersection
     $$(-2,1)$$ and $$(-2,-1)$$
    The bounded region is show in figure. 
    The required area 
    $$\displaystyle=2\int _{ 0 }^{ 1 }{ \left( 1-{ 3y }^{ 2 } \right) -\left( -{ 2y }^{ 2 } \right)  } $$
    $$\displaystyle =2\int _{ 0 }^{ 1 }{ \left( 1-{ y }^{ 2 } \right)  } dy=2\left[ y-\frac { { y }^{ 3 } }{ 3 }  \right] _{ 0 }^{ 1 }=2\times \frac { 2 }{ 3 } =\frac { 4 }{ 3 } .$$

  • Question 7
    1 / -0
     The area bounded by the curves $$\mathrm{y}=$$ cosx and $$\mathrm{y}=$$ sinx between the ordinates $$\mathrm{x}=0$$ and $$\displaystyle \mathrm{x}=\frac{3\pi}{2}$$:
    Solution
    Required area$$=\displaystyle \int_0^{\frac{3\pi}{2}}|sinx-cosx|dx$$

    $$= \displaystyle \int_0^{\frac{\pi}{4}}(\cos x-\sin x)dx+ \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}(\sin x-\cos x)dx+ \int_{\frac{5\pi}{4}}^{\frac{3\pi}{2}}(\cos x-\sin x)dx$$

     $$= \sqrt{2}-1+\sqrt{2}+\sqrt{2}+\sqrt{2}-1$$

    $$= 4\sqrt{2}-2$$
  • Question 8
    1 / -0
    The area (in square units) bounded by the curves $$y=\sqrt{x},\ 2y-x+3=0$$, $$X-$$axis, and lying in the first quadrant is:
    Solution
    Given, $$y=\sqrt{x},\ 2y-x+3=0$$
    from above we have,
    $$2\sqrt x-x+3=0$$
    $$
    2\sqrt{x}=x-3
    $$
    $$
    4x=x^{2}-6x+9
    $$
    $$
    x^{2}-10x+9=0
    $$
    $$
    x=9,\ x=1
    $$

    now,
    $$\displaystyle \int_{0}^{3}[(2y+3)-y^{2}] dy$$
    $$
    =\left[y^{2}+3y-\frac{y^{3}}{3}\right]_{0}^{3}=9+9-9=9
    $$

  • Question 9
    1 / -0
    The area bounded between the parabolas $$4 x^{2}=y$$ and $$x^{2}=9y$$, and the straight line $$\mathrm{y}=2$$ is:
    Solution
    The given curves $$y=4x^2$$ and $$\displaystyle y=\dfrac {1}{9}x^2$$

    $$\displaystyle Area(\text{yellow region})=2\int_0^2\left(3\sqrt y-\frac {\sqrt y}{2}\right)dy=2\left[\frac {5y\sqrt y}{3}\right]_0^2$$

    $$\displaystyle =2\times \frac {5}{3}\times 2\sqrt 2=\frac {20\sqrt 2}{3}$$

  • Question 10
    1 / -0
    The area (in sq. units) of the region $$\left\{ \left( x,y \right) \in { R }^{ 2 }:{ x }^{ 2 }\le y\le 3-2x \right\} $$, is:
    Solution
    From given data in question,
    Point of intersection of given two curve $$y = x^2$$ and $$y = -2 x + 3$$
    $$x^2 = -2 x + 3$$

    $$x = -3 , 1$$

    Area of shaded region 
    $$= \displaystyle \int_{-3}^1 ((-2x + 3) - x^2 ) dx$$

    $$= \left[-x^2 + 3x - \dfrac{x^3}{3} \right]_{-3}^1$$

    $$=  - \left({1^2 - 3^2} \right) +3 \times (1-(-3)) - \dfrac{1^3 + 3^3}{3}$$

    $$= 12 + 8 - \dfrac{28}{3} = \dfrac{32}{3}$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now