For coordinates of $$p$$
Curves : $$x^2 = ay, y^2 = ax$$
$$\Rightarrow y^2 = \left(\dfrac{x^2}{a} \right)^2 = ax$$
$$\dfrac{x^4}{a^2} = ax$$
$$x^4 = a^3x$$
$$x(x^3 - a^3) = 0$$
$$\Rightarrow x = 0, x=a....(i)$$
$$\Rightarrow y^2 = ax$$
$$\therefore y = 0, a....(from \ i)$$
$$\therefore$$ equation of chord $$OP$$
$$O(0,0)\equiv(x_1,y_1) \ and \ P(a,a)\equiv(x_2,y_2)$$
$$y - y_1 = \dfrac{y_2-y_1}{x_2-x_1} (x-x_1)$$
$$y - 0 = \dfrac{a-0}{a-0} (x-o)$$
$$y = x$$
$$\therefore$$ At point $$Q$$
$$x = b$$ and $$y = b$$
$$\Rightarrow Q \equiv (b,b)$$
$$\therefore$$ ar $$\Delta OQR = \dfrac{1}{2} \times b \times b = \dfrac{b^2}{2} = \dfrac{1}{2}$$
$$\Rightarrow b^2 = 1 \Rightarrow b=1$$
Now, area bounded by the curves
$$= \displaystyle \int_0^a \left(\sqrt{ax} - \dfrac{x^2}{a}\right)dx = \int_0^a a^{1/2} x^{1/2}dx - \int_0^a \dfrac{x^2}{a} dx$$
$$=a^{1/2}\left[\dfrac{x^{3/2}}{3/2}\right]_0^a-\dfrac{1}{a}\left[\dfrac{x^3}{3}\right]_0^a$$
$$=\dfrac{2}{3}a^{1/2}. a^{3/2} - \dfrac{1}{a} \dfrac{a^3}{3} = \dfrac{2}{3} a^2 - \dfrac{1}{3}a^2$$
$$= \dfrac{1}{3}a^2$$
$$\therefore \displaystyle \int_0^b \left(\sqrt{ax} - \dfrac{x^2}{a}\right)dx = \dfrac{1}{2} \times \dfrac{1}{3}a^2 = \dfrac{a^2}{6}$$
$$\dfrac{2}{3} a^{1/2} [x^{3/2}]_0^b - \dfrac{1}{3a} [x^3]_0^b = \dfrac{a^2}{6}$$
$$\Rightarrow \dfrac{2}{3}a^{1/2} b^{3/2} - \dfrac{1}{3a}b^3 = \dfrac{a^2}{6}$$
Now after putting value of $$b$$.
we get,
$$\dfrac{2}{3}a^{1/2} - \dfrac{1}{3a} = \dfrac{a^2}{6}$$
$$2 a^{3/2} -1 = \dfrac{3a^3}{6} = \dfrac{a^3}{2}$$
$$4a^{3/2} - 2 =a^3 \Rightarrow 4a^{3/2} = a^3 + 2$$
Now squaring on both the side
$$\Rightarrow a^6 + 4a^3 + 4 = 16a^3$$
$$\Rightarrow a^6 - 12a^3 + 4 = 0$$
$$\therefore$$ a will satisfy
$$x^6 - 12x^3 + 4 = 0$$