Self Studies

Application of Integrals Test - 11

Result Self Studies

Application of Integrals Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area(in sq. units) of the smaller portion enclosed between the curves, $$x^2+y^2=4$$ and $$y^2=3x$$, is.
    Solution
    Here, $$x^2+y^2=4$$ and $$y^2=3x$$
    So finding the co-ordinates of $$x$$
    $$\Rightarrow$$$$x^2+3x-4=0$$

    $$(x+4)(x-1)=0$$

    $$x=-4, x=1$$

    Area$$=\left(\displaystyle\int^1_0\sqrt{3}\cdot \sqrt{x}dx+\displaystyle\int^2_1\sqrt{4-x^2}\cdot dx\right ) \times 2$$

    $$=\left(\displaystyle \sqrt{3}\left(\displaystyle\frac{x^{3/2}}{3/2}\right)^1_0+\left(\displaystyle\frac{x}{2}\sqrt{4-x^2}+2sin^{-1}\frac{x}{2}\right)^2_1\right)\times 2$$

    $$=\left(\sqrt{3}\left(\displaystyle\frac{2}{3}\right)+\left\{2\cdot \displaystyle\frac{\pi}{2}-\left(\displaystyle\frac{\sqrt{3}}{2}+\frac{\pi}{3}\right)\right\}\right)\times 2$$

    $$=\left(\displaystyle\frac{2}{\sqrt{3}}-\frac{\sqrt{3}}{2}+\frac{2\pi}{3}\right)\times 2$$

    $$=\left(\displaystyle\frac{1}{2\sqrt{3}}+\frac{2\pi}{3}\right)\times 2=\displaystyle\frac{1}{\sqrt{3}}+\frac{4\pi}{3}$$.

  • Question 2
    1 / -0
    For $$a > 0$$, let the curves $$C_1 : y^2 = ax$$ and $$C_2 : x^2 = ay$$ intersect at origin $$O$$ and a point $$P$$. Let the line $$x = b (0 < b < a)$$ intersect the chord $$OP$$ and the x-axis at points $$Q$$ and $$R$$, rspectively. If the line $$x=b$$ bisects the area bounded by the curves, $$C_1$$ and $$C_2$$, and the area of $$\Delta OQR = \dfrac{1}{2}$$, then '$$a$$' satisfies the equation:
    Solution
    area $$\Delta OQR = \dfrac{1}{2}.....given$$

    For coordinates of $$p$$

    Curves : $$x^2 = ay,   y^2 = ax$$

    $$\Rightarrow y^2 = \left(\dfrac{x^2}{a} \right)^2 = ax$$

    $$\dfrac{x^4}{a^2} = ax$$

    $$x^4 = a^3x$$

    $$x(x^3 - a^3) = 0$$

    $$\Rightarrow x = 0,  x=a....(i)$$

    $$\Rightarrow y^2 = ax$$

    $$\therefore y = 0, a....(from \ i)$$

    $$\therefore$$ equation of chord $$OP$$

    $$O(0,0)\equiv(x_1,y_1) \ and \ P(a,a)\equiv(x_2,y_2)$$

    $$y - y_1 = \dfrac{y_2-y_1}{x_2-x_1} (x-x_1)$$

    $$y - 0 = \dfrac{a-0}{a-0} (x-o)$$

    $$y = x$$

    $$\therefore$$ At point $$Q$$

    $$x = b$$ and $$y = b$$ 

    $$\Rightarrow Q \equiv (b,b)$$

    $$\therefore$$ ar $$\Delta OQR = \dfrac{1}{2} \times b \times b = \dfrac{b^2}{2} = \dfrac{1}{2}$$     

    $$\Rightarrow b^2 = 1 \Rightarrow b=1$$

    Now, area bounded by the curves

    $$= \displaystyle \int_0^a \left(\sqrt{ax} - \dfrac{x^2}{a}\right)dx = \int_0^a a^{1/2} x^{1/2}dx - \int_0^a \dfrac{x^2}{a} dx$$

    $$=a^{1/2}\left[\dfrac{x^{3/2}}{3/2}\right]_0^a-\dfrac{1}{a}\left[\dfrac{x^3}{3}\right]_0^a$$     
     
    $$=\dfrac{2}{3}a^{1/2}. a^{3/2} - \dfrac{1}{a} \dfrac{a^3}{3} = \dfrac{2}{3} a^2 - \dfrac{1}{3}a^2$$

    $$= \dfrac{1}{3}a^2$$

    $$\therefore \displaystyle \int_0^b \left(\sqrt{ax} - \dfrac{x^2}{a}\right)dx = \dfrac{1}{2} \times \dfrac{1}{3}a^2 = \dfrac{a^2}{6}$$

    $$\dfrac{2}{3} a^{1/2} [x^{3/2}]_0^b - \dfrac{1}{3a} [x^3]_0^b = \dfrac{a^2}{6}$$

    $$\Rightarrow \dfrac{2}{3}a^{1/2} b^{3/2} - \dfrac{1}{3a}b^3 = \dfrac{a^2}{6}$$   

     Now after putting value of $$b$$.

    we get,
    $$\dfrac{2}{3}a^{1/2} - \dfrac{1}{3a} = \dfrac{a^2}{6}$$

    $$2 a^{3/2} -1 = \dfrac{3a^3}{6} = \dfrac{a^3}{2}$$

    $$4a^{3/2} - 2 =a^3 \Rightarrow 4a^{3/2} = a^3 + 2$$

    Now squaring on both the side

    $$\Rightarrow a^6 + 4a^3 + 4 = 16a^3$$

    $$\Rightarrow a^6 - 12a^3 + 4 = 0$$

    $$\therefore$$ a will satisfy

    $$x^6 - 12x^3 + 4 = 0$$

    $$\therefore$$ $$\boxed{x^6 - 12x^3 + 4 = 0}....Answer$$

    Hence option $$'C'$$ is the answer.

  • Question 3
    1 / -0
    Given $$f(x)=\begin{cases} x,0\le x<\dfrac { 1 }{ 2 }  \\ \dfrac { 1 }{ 2 } ,x=\dfrac { 1 }{ 2 }  \\ 1-x,\dfrac { 1 }{ 2 } <x\le 1 \end{cases}$$ and $$g(x)=\left(x-\dfrac{1}{2}\right)^{2},x\epsilon R$$, Then the area (in sq.units) of the region bounded by the curves $$y=f(x)$$ and $$y=g(x)$$ between the lines $$2x=1$$ and $$2x=\sqrt{3}$$, is:
    Solution
    $$\left\{\begin{matrix}x &,0<n<\dfrac{1}{2} \\\dfrac{1}{2}  &,n=\dfrac{1}{2} \\  1-n&  ,\dfrac{1}{2}<n<1\end{matrix}\right.$$

    and $$g(x)=(x-\dfrac{1}{2})^2$$
    graph of the current is as 
    refer above image.
    Required image =are of trapezium $$\displaystyle ABCD-\int^{\dfrac{\sqrt{3}}{2}}_{\dfrac{1}{2}}\left(x-\dfrac{1}{2}\right)^2dx$$

    $$=\dfrac{1}{2}\left(\dfrac{\sqrt{3}-1}{2}\right)\left(\dfrac{1}{2}+1-\dfrac{\sqrt{3}}{2}\right)-\dfrac{1}{3}\left(\left(x-\dfrac{1}{2}\right)^3\right)^{\dfrac{\sqrt{3}}{2}}_{\dfrac{-1}{2}}$$

    $$=\dfrac{\sqrt{3}}{4}-\dfrac{1}{3}$$

  • Question 4
    1 / -0
    If the area enclosed between the curves $$y=kx^2$$ and $$x=ky^2$$, $$(k > 0)$$, is $$1$$ square unit. Then $$k$$ is?
    Solution
    Area bounded by $$y^2=4ax$$ & $$x^2=4by$$, a, b $$\neq 0$$ is $$\left|\dfrac{16ab}{3}\right|$$
    by using formula: $$4a=\dfrac{1}{k}=4b, k > 0$$
    Area $$=\left|\dfrac{16\cdot \dfrac{1}{4k}\cdot \dfrac{1}{4k}}{3}\right|=1$$
    $$\Rightarrow k^2=\dfrac{1}{3}$$
    $$\Rightarrow k=\dfrac{1}{\sqrt{3}}$$.
  • Question 5
    1 / -0
    If the area of the region bounded by the curves, $$y=x^2, y=\displaystyle\frac{1}{x}$$ and the lines $$y=0$$ and $$x=t(t > 1)$$ is $$1$$ sq. unit, then t is equal to?
    Solution
    Given, $$y=x^2, y=\displaystyle\frac{1}{x}$$ 

    Area bounded by the curves is the region ABCD.

    Therefore, area $$=\displaystyle \int_{0}^{1}x^2dx + \int_{1}^{t}\dfrac{1}{x}dx $$
    $$=\left [ \dfrac{x^3}{3} \right ]_{0}^{1} +\left [ \ln (x) \right ]_{1}^{t}$$

    $$ =\dfrac{1}{3}+\ln(t) $$

    It is given that area enclosed is $$1$$

    $$\Rightarrow  \dfrac{1}{3}+\ln(t)=1 $$
    $$\Rightarrow \ln(t)=\dfrac{2}{3} $$

    $$ \Rightarrow t = e^{\frac{2}{3}}$$

    Hence, answer is option (B)

  • Question 6
    1 / -0
    The area (in sq. units) of the region $$\{(x, y) \in R^2 |4x^2 \le y \le 8x + 12\}$$ is :
    Solution
    Shaded are is the area between curve 

    $$Y = 4x^2 $$ __(I)
    and 
    $$Y = 8x + 12$$ __(II)

    on solving equation (I) & (II)   (to find intersection point of the curves).

    $$4x^2 - 8x - 12 = 0$$

    $$4(x +1 )(x - 3) = 0$$

    $$x = -1 $$ or $$x  = 3$$

    $$\therefore$$ shaded Area $$= \displaystyle \int_{-1}^3 [(8x + 12) - (4x^2)] dx$$

    $$= \displaystyle \int_{-1}^3 8x dx + \int_{-1}^3 12 dx - 4 \int_{-1}^3 x^2 dx$$

    $$= \left[4x^2 + 12 x - \dfrac{4}{3} x^3 \right]_{-1}^3$$

    $$=4\cdot 9+12\cdot 3-\dfrac 43\cdot 27-4+12-\dfrac 43$$

    $$= \dfrac{128}{3}$$

  • Question 7
    1 / -0
    The area enclosed between the curves $$\mathrm{y}=\mathrm{a}\mathrm{x}^{2}$$ and $$\mathrm{x}=\mathrm{a}\mathrm{y}^{2} (\mathrm{a}>0)$$ is 1 sq. unit, then the value of a is
    Solution
    Points of intersection of  $$y=\mathrm{a}\mathrm{x}^{2}$$ and

    $$\mathrm{x}=\mathrm{a}\mathrm{y}^{2}$$ are $$(0, 0)$$ and

    $$\left(\displaystyle \frac{1}{\mathrm{a}}, \displaystyle

    \frac{1}{\mathrm{a}}\right)$$.
    Hence area is,  $$\displaystyle

    \int_{0}^{1/\mathrm{a}}\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}}}- ax^{2}

    \right)\mathrm{dx} =1\Rightarrow \mathrm{a}=\frac{1}{\sqrt{3}}    

    (\mathrm{a}\mathrm{s}  \    \mathrm{a}>0)$$.
  • Question 8
    1 / -0
    The area of the region $$\left \{(x, y) : xy \leq 8, 1 \leq y\leq x^{2}\right \}$$ is
    Solution
    $$xy \leq 8$$
    $$1\leq y\leq x^{2}$$
    $$x^{2} . x = 8$$
    $$x = 2$$
    Require Area $$= \int_{1}^{4} \left (\dfrac {8}{y} - \sqrt {y}\right )dy = \left [8ln y - \dfrac {y^{3/2}}{3/2}\right ]_{1}^{4} = 8\ ln 4 - \dfrac {2}{3} . 8 - 0 + \dfrac {2}{3} = 16 ln2 - \dfrac {14}{3}$$.

  • Question 9
    1 / -0

    The area of the region between the curves $$\mathrm{y}=\sqrt{\dfrac{1+\sin \mathrm{x}}{\cos \mathrm{x}}}$$ and $$\mathrm{y}=\sqrt{\dfrac{1-\sin \mathrm{x}}{\cos \mathrm{x}}}$$ bounded by the lines $$\mathrm{x}=0$$ and $$\displaystyle \mathrm{x}=\frac{\pi}{4}$$ is
    Solution

    $$\displaystyle \int_{0}^{\pi/4}(\sqrt{\dfrac{1+\sin \mathrm{x}}{\cos \mathrm{x}}}-\sqrt{\dfrac{1-\sin \mathrm{x}}{\cos \mathrm{x}}})\mathrm{d}\mathrm{x}$$

    $$=\int _{0}^{\pi /4}(\sqrt{\dfrac{1+tan\dfrac{x}{2}}{1-tan\dfrac{x}{2}}}-\sqrt{\dfrac{1-tan\dfrac{x}{2}}{1+tan\dfrac{x}{2}}})dx=\int \dfrac{(1+tan\dfrac{x}{2})-(1-tan\dfrac{x}{2})}{\sqrt{1-tan^{2}\dfrac{x}{2}}}dx$$

    $$=\displaystyle \int_{0}^{\pi/4}\dfrac{2\tan\dfrac{\mathrm{x}}{2}}{\sqrt{1-\tan^{2}\frac{\mathrm{x}}{2}}} dx =\displaystyle \int_{0}^{\sqrt{2}-1}\dfrac{4\mathrm{t}}{(1+\mathrm{t}^{2})\sqrt{1-\mathrm{t}^{2}}} dt$$ as $$\displaystyle \tan\dfrac{\mathrm{x}}{2}=\mathrm{t}$$.
  • Question 10
    1 / -0
    Let the functions $$f:R\rightarrow R$$ and $$𝑔:R\rightarrow R$$ be defined by $$f(x)=e^{ x-1 }-e^{ -|x-1| }$$ and $$g(x)=\dfrac{1}{2}(e^{x-1}+e^{1-x})$$. Then the area of the region in the first quadrant bounded by the curves $$𝑦=𝑓(𝑥), 𝑦=𝑔(𝑥) $$ and $$x=0$$ is 
    Solution
    $$f(x) = 0$$                                 $$ ; x < 1$$
             $$= e^{x-1} - e^{-(x-1)}$$          $$; x \ge 1$$

    while $$g(x) \ge 1$$
    so they will intresect in the region $$x > 1$$
    solve $$f(x) = g(x)$$

    $$e^{x-1} - e^{-(x-1)} = \dfrac{1}{2} (e^{x-1} + e^{1-x})$$

    $$\dfrac{1}{2} e^{x-1} = \dfrac{3}{2} e^{1-x}$$

    $$e^{2x}=3e^2$$

    $$2x = 2 + \ell n3$$

    $$x = 1 + \ell n \sqrt{3}$$

    $$\displaystyle A = \int_0^1 g(x) dx + \int_1^{1+\ell n\sqrt{3}} (g(x) - f(x)) dx$$

    $$\displaystyle = \dfrac{1}{2} \int_0^1 (e^{x-1} + e^{1-x})dx + \int_1^{1+\ell n \sqrt{3}} \dfrac{1}{2} (e^{x-1} + e^{1-x}) - (e^{x-1} - e^{1-x})dx$$

    $$\displaystyle = \dfrac{1}{2} \int_1^{1+\ell n \sqrt{3}} (e^{x-1} + e^{1-x})dx - \int_1^{1+\ell n \sqrt{3}} (e^{x-1} - e^{1-x})dx$$

    $$\displaystyle = \dfrac{1}{2} [e^{x-1} - e^{1-x} ]_0^{1+\ell n \sqrt{3}} - (e^{x-1} + e^{1-x})_1^{1+ \ell n \sqrt{3}}$$

    $$= \displaystyle = \dfrac{1}{3} [ \sqrt{3} - \dfrac{1}{\sqrt{3}} - \dfrac{1}{e} + e] - [\sqrt{3} + \dfrac{1}{\sqrt{3}} - 1 - 1]$$

    $$= 2 + \dfrac{1}{2} \left(e-\dfrac{1}{e}\right) - \dfrac{\sqrt{3}}{2} - \dfrac{3}{2\sqrt{3}}$$

    $$= (2-\sqrt{3}) + \dfrac{e-\frac{1}{e}}{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now