$$\begin{array}{l} 3{ x^{ 2 } }+5y=32 \\ Draw\, a\, parabola\, .\, symmetrical\, about\, negative\, x-axis \\ Also, \\ y=\left| { x-2 } \right| \\ \Rightarrow y=\left( \begin{array}{l} x-2,\, \, \, \, \, x\ge 2 \\ 2-x,\, \, \, \, \, x<2 \end{array} \right) \\ y=x-2,\, \, x\ge 2\, \, represents\, a\, line,\, cutting\, the\, x-axis\, at\, \, A\left( { 2,0 } \right) \, \, and\, the\, parabola\, C\left( { 3,1 } \right) \\ And,\, y=2-x,\, x<2\, \, represents\, a\, line,\, cutting\, the\, parabola\, at\, \left( { -2,4 } \right) \\ Shaded\, area\, AEYCA \\ =\int _{ -2 }^{ 2 }{ \left[ { \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 } } \right) -\left( { 2-x } \right) } \right] }dx+\int _{ 2 }^{ 3 }{ \left[ { \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 } } \right) -\left( { x-2 } \right) } \right] }dx \\ =\int _{ -2 }^{ 3 }{ \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 } } \right) dx- }\int _{ -2 }^{ 2 }{ \left( { 2-x } \right) dx+ }\int _{ 2 }^{ 3 }{ \left( { x-2 } \right) dx } \\ =\frac { 1 }{ 5 } \left[ { 32-x } \right] _{ -2 }^{ 3 }-\left[ { 2x-\frac { { { x^{ 2 } } } }{ 2 } } \right] _{ -2 }^{ 2 }-\left[ { \frac { { { x^{ 2 } } } }{ 2 } -3x } \right] _{ 2 }^{ 3 } \\ =\frac { 1 }{ 5 } \left[ { 32\times 3-27+64-8 } \right] -\left( { 4-2+4+2 } \right) -\left( { \frac { 9 }{ 2 } -6-2+4 } \right) \\ =\frac { 1 }{ 5 } \left[ { 96-35+64 } \right] -\left( 8 \right) -\left( { \frac { 9 }{ 2 } -4 } \right) \\ =\frac { { 125 } }{ 5 } -4-\frac { 9 }{ 2 } \\ =25-4-\frac { 9 }{ 2 } \\ =\frac { { 42-9 } }{ 2 } \\ =\frac { { 33 } }{ 2 } \, \, sq.units. \\ Hence,\, option\, C\, is\, the\, correct\, answer. \end{array}$$