Self Studies

Application of Integrals Test - 12

Result Self Studies

Application of Integrals Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area enclosed by the curves $$y=sinx+$$cosx and $$y=|cosx-$$sinx $$|$$over the interval $$[0, \frac{\pi}{2}]$$is

    Solution
    $$\displaystyle \cos { x } > \sin { x\quad , } \forall x\epsilon \left( 0, \frac { \pi  }{ 4 }  \right) $$, and $$\displaystyle \cos { x } < \sin { x\quad , } \forall x\epsilon \left( \frac { \pi  }{ 4 } , \frac { \pi  }{ 2 }  \right) $$
    $$y_{1}=\sin x+\cos x $$
    $$y_{2}=\left| \cos { x } -\sin { x }  \right| $$
    $$
    \Rightarrow $$Area

    $$=\int _{ 0 }^{  \pi/2  }{ \left( { y }_{ 1 }-{ y }_{ 2 } \right) dx } $$

    $$=$$ $$\int_{0}^{ \pi/4  }$$ $$(( sin x+cosx)-(cos x-sin x))dx$$ $$+\int_{ \pi/4  }^{\pi/2} ((sin x+cos x)-(sin x-cos x)
    )dx$$

    $$=4-2\sqrt{2}$$
  • Question 2
    1 / -0
    Area enclosed between the curves $$y=8-{x}^{2}$$ and $$y={x}^{2}$$, is:
    Solution
    $$y=8-{ x }^{ 2 }\quad y={ x }^{ 2 }$$
    Intersection points are
    $${ x }^{ 2 }=8-{ x }^{ 2 }$$
    $$2{ x }^{ 2 }=8$$
    $${ x }^{ 2 }=4\quad x=-2,2$$
    $$\int _{ -2 }^{ 2 }{ \left( 8-{ x }^{ 2 }-{ x }^{ 2 } \right) dx } $$
    $$\int _{ -2 }^{ 2 }{ \left( 8-2{ x }^{ 2 } \right) dx } $$
    $$2{ \left( 8x-\cfrac { 2{ x }^{ 3 } }{ 3 }  \right)  }_{ 0 }^{ 2 }$$
    $$=2\left( 8\left( 2 \right) -\cfrac { 2\left( 8 \right)  }{ 3 }  \right) $$
    $$=2\left( 16-\cfrac { 16 }{ 3 }  \right) $$
    $$=2\left( \cfrac { 32 }{ 13 }  \right) $$
    $$=\cfrac { 64 }{ 3 } $$ sq. units

  • Question 3
    1 / -0
    If area bounded by the curves $$x=at^2$$ and $$y=ax^2$$ is $$1$$, then a$$=$$ __________.
    Solution
    $$x = ay^2$$ and $$y = ax^2$$ 
    $$\Rightarrow a^3x^3 = 1 \Rightarrow (x,y) = (\dfrac{1}{a}, \dfrac{1}{a})$$
    The area bounded by the curves is computed by:
    $$\displaystyle \int_{0}^{1/a} |ax^2 - \sqrt{\dfrac{x}{a}}| dx = 1 \Rightarrow \dfrac{1}{3a^2} = 1 \Rightarrow a = \dfrac{1}{\sqrt{3}}$$
    So option $$C$$ is the correct answer.
  • Question 4
    1 / -0
    Calculate the area of the shaded region in the figure, where $$\square ABCD$$ is a square with side 8 cm each. $$(\pi =3.14)$$

    Solution
    Area of square =$$ Side^2 $$
                             =$$ 8^2 $$
                             =$$ 64$$ sq cm
    Area of shaded portion = Double area of segment formed by diagonal of the square
    Area of two quadrants  =$$\dfrac{1}{2}\pi r^2$$

                                         =$$\dfrac{1}{2} \times 3.14 \times 8^2$$

                                         =$$100.48$$ sq cm
    Area of square - Area of two triangles formed by radii and the cord
    So,
     Area of shaded portion =$$ 100.48-64$$
                                          =$$ 36.48 sq$$ cm
  • Question 5
    1 / -0
    The area included between the parabolas
    $$y=\dfrac { { x }^{ 2 } }{ 4a }$$ and $$y=\dfrac { 8{ a }^{ 3 } }{ { x }^{ 2 }+4{ a }^{ 2 } }$$ is
    Solution

    Firstly we have to find the point of intersection.

    $$\dfrac { { x }^{ 2 } }{ 4a } =\dfrac { 8{ a }^{ 3 } }{ { x }^{ 2 }+4{ a }^{ 2 } } $$

    On solving the equation We get $$x^{2}=4a^{2}$$ and $$x^{2}= -8a^{2}$$ (which is not possible)

    We have $$x=2a$$ and $$x=-2a$$

    Now area between these 2 curves is 

    $$\displaystyle \int _{ -2a }^{ 2a }{ \left(\dfrac { 8{ a }^{ 3 } }{ { x }^{ 2 }+4{ a }^{ 2 } } -\dfrac { { x }^{ 2 } }{ 4a } \right)}dx$$

    $$\displaystyle =\int _{ -2a }^{ 2a }{ \dfrac { 8{ a }^{ 3 } }{ { x }^{ 2 }+4{ a }^{ 2 } } dx } -\int _{ -2a }^{ 2a }{ \dfrac { { x }^{ 2 } }{ 4a }  } dx$$

    $$=\dfrac { 8{ a }^{ 3 } }{ 2a } \tan ^{ -1 }{ \dfrac { x }{ 2a }  } -\dfrac { { x }^{ 3 } }{ 12a } $$

    After putting the limits we get

    $$\dfrac { 8{ a }^{ 3 } }{ 2a } \tan ^{ -1 }{ \dfrac { 2a }{ 2a }  } -\dfrac { { 8a }^{ 3 } }{ 12a } -(\dfrac { 8{ a }^{ 3 } }{ 2a } \tan ^{ -1 }{ \dfrac { -2a }{ 2a }  } -\dfrac { { -8a }^{ 3 } }{ 12a } )$$

    $$=\pi { a }^{ 2 }-\dfrac { 4 }{ 3 } { a }^{ 2 }$$

  • Question 6
    1 / -0
    Find the area of the region bounded by the curve $$y^2=4x$$ and the line $$x=3$$.
    Solution
    Required area = area of OACO = 2 ( Area of OAB)
    $$\displaystyle =2\int_{0}^{3} 2\sqrt{x} dx$$

    $$=\dfrac{8}{3} \times (3)^{3/2}=8\sqrt{3}$$ units.

  • Question 7
    1 / -0
    The area enclosed between the $${y}^{2}=x$$ and $$y=|x|$$ is
    Solution
    $$y = x - \left( 1 \right)\,\,and\,{y^2} = x - \left( 2 \right)$$
    $$solving\,1\,and\,2$$
    $${y^2} = y$$
    $${y^2} - y = 0$$
    $$y\left( {y - 1} \right) = 0$$
    so, $$y = 0,1$$
    thus points of intersection are $$(0,0)$$ ,$$(1,1)$$
    Area enclosed=$$\int_0^1 {\left( {{y_1} - {y_2}} \right)dx} $$
    $$ = \int_0^1 {\left( {\sqrt x  - x} \right)dx} $$
    $$ = {\left[ {\dfrac{2}{3}{x^{3/2}}\dfrac{{ - {x^2}}}{2}} \right]_0}^1$$
    $$ = \dfrac{2}{3} - \dfrac{1}{2} = \dfrac{1}{6}$$

  • Question 8
    1 / -0
    The value of $$a$$ for which the area between the curves $${y^2} = 4ax$$ and $${x^2} = 4ay$$ is $$1\,sq.\,unit$$, is-
    Solution
    $$\begin{array}{l}{y^2} = 4ax\\y = \sqrt {4ax} \\{x^2} = 4ay\\y = \dfrac{{{x^2}}}{{4a}}\\area = \int_0^{4a} {\sqrt {4ax} dx}  - \int_0^{4a} {\dfrac{{{x^2}}}{{4a}}dx} \\\left. {2\sqrt a  \times \dfrac{2}{3}{{\left( x \right)}^{3/2}}} \right]_0^{4a} - \left. {\dfrac{{{x^3}}}{{3\left( {4a} \right)}}} \right]_0^{4a}\\ = \dfrac{{32{a^2}}}{3} - \dfrac{{16{a^2}}}{3}\\ = \dfrac{{16{a^2}}}{3} = 1\\a = \dfrac{{\sqrt 3 }}{4}\end{array}$$
  • Question 9
    1 / -0
    The area bounded by curves $$3x^2 + 5y = 32 $$ and $$y = \left|x-2\right|$$ is 
    Solution
    $$\begin{array}{l} 3{ x^{ 2 } }+5y=32 \\ Draw\, a\, parabola\, .\, symmetrical\, about\, negative\, x-axis \\ Also, \\ y=\left| { x-2 } \right|  \\ \Rightarrow y=\left( \begin{array}{l} x-2,\, \, \, \, \, x\ge 2 \\ 2-x,\, \, \, \, \, x<2 \end{array} \right)  \\ y=x-2,\, \, x\ge 2\, \, represents\, a\, line,\, cutting\, the\, x-axis\, at\, \, A\left( { 2,0 } \right) \, \, and\, the\, parabola\, C\left( { 3,1 } \right)  \\ And,\, y=2-x,\, x<2\, \, represents\, a\, line,\, cutting\, the\, parabola\, at\, \left( { -2,4 } \right)  \\ Shaded\, area\, AEYCA \\ =\int  _{ -2 }^{ 2 }{ \left[ { \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 }  } \right) -\left( { 2-x } \right)  } \right]  }dx+\int  _{ 2 }^{ 3 }{ \left[ { \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 }  } \right) -\left( { x-2 } \right)  } \right]  }dx \\ =\int  _{ -2 }^{ 3 }{ \left( { \frac { { 32-32{ x^{ 2 } } } }{ 5 }  } \right) dx- }\int  _{ -2 }^{ 2 }{ \left( { 2-x } \right) dx+ }\int  _{ 2 }^{ 3 }{ \left( { x-2 } \right) dx } \\ =\frac { 1 }{ 5 } \left[ { 32-x } \right] _{ -2 }^{ 3 }-\left[ { 2x-\frac { { { x^{ 2 } } } }{ 2 }  } \right] _{ -2 }^{ 2 }-\left[ { \frac { { { x^{ 2 } } } }{ 2 } -3x } \right] _{ 2 }^{ 3 } \\ =\frac { 1 }{ 5 } \left[ { 32\times 3-27+64-8 } \right] -\left( { 4-2+4+2 } \right) -\left( { \frac { 9 }{ 2 } -6-2+4 } \right)  \\ =\frac { 1 }{ 5 } \left[ { 96-35+64 } \right] -\left( 8 \right) -\left( { \frac { 9 }{ 2 } -4 } \right)  \\ =\frac { { 125 } }{ 5 } -4-\frac { 9 }{ 2 }  \\ =25-4-\frac { 9 }{ 2 }  \\ =\frac { { 42-9 } }{ 2 }  \\ =\frac { { 33 } }{ 2 } \, \, sq.units. \\ Hence,\, option\, C\, is\, the\, correct\, answer. \end{array}$$

  • Question 10
    1 / -0
    The area bounded by the $$x-$$axis, the curve $$y=f\left(x\right)$$ and the lines $$x=1$$ and $$x=b$$ is equal to $$\left(\sqrt{{b}^{2}+1}-\sqrt{2}\right)$$ for all $$b>1$$, then $$f\left(x\right)$$ is
    Solution
    $$\int_{1}^{b}{f\left(x\right)dx}=\sqrt{\left({b}^{2}+1\right)}-\sqrt{2}$$
    Differentiating both sides w.r.t $$b$$ , we get
    $$f\left(b\right)=\dfrac{b}{\sqrt{\left({b}^{2}+1\right)}}$$
    Hence $$f\left(x\right)=\dfrac{x}{\sqrt{\left({x}^{2}+1\right)}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now