Self Studies

Application of Integrals Test - 13

Result Self Studies

Application of Integrals Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the figure bounded by $$f\left(x\right)=\sin{x}, g\left(x\right)=\cos{x}$$ in the first quadrant is:
    Solution
    We know that $$\sin{x}\ge \cos{x}$$ for $$x\in\left[\dfrac{\pi}{4},\dfrac{\pi}{2}\right]$$
    and $$\sin{x}\le \cos{x}$$ for $$x\in\left[0,\dfrac{\pi}{4}\right]$$
    $$\therefore$$ the required area is
    $$=\int_{0}^{\frac{\pi}{4}}{\left(\cos{x}-\sin{x}\right)dx}+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\left(\sin{x}-\cos{x}\right)dx}$$
    $$=\left(\sin{x}+\cos{x}\right)_{0}^{\frac{\pi}{4}}+\left(\sin{x}+\cos{x}\right)_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$
    $$=\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)$$
    $$=2\left(\sqrt{2}-1\right)$$.sq.unit.
  • Question 2
    1 / -0
    Points of inflexion of the curve
    $$y = x^4 - 6x^3 + 12x^2 + 5x + 7$$ are
    Solution
    $$y=x^{4}-6x^{3}+12x^{2}+5x+7$$
    $$y(x)=4x^{3}-18x^{2}+24x+5$$
    $$y(x)=12x^{2}-36x+24$$
    $$y(x)=0$$
    $$12x^{2}-36x+24=0$$
    $$x^{2}-3x+2=0$$
    $$x^{2}-2x-x+2=0$$
    $$x(x-2)-1(x-2)=0$$
    $$(x-1)-1(x-2)=0$$
    $$(x-1)(x-2)=0$$
    $$x=1, 2$$
    Inflection point of a function is where the function changes from concave up to concave down or vice-versa
    $$x<1, f(x)>0$$
    $$1<x<2, f(x)<0$$
    $$x>2, f(x)>0$$
    $$\because f(x)$$ changes sign
    $$\therefore$$ At $$x=1, 2y=f(x)$$ has inflection point 
    At $$x=1, y=f(1)=19$$
    At $$x=2, y=f(2)=33$$
    Point of inflection $$(1,19); (2,33)$$
  • Question 3
    1 / -0
    The area under the curve $$y=2x^3+4x^2$$ between $$x=2,x=4$$ is 
    Solution
    The area under the curve is given as $$\displaystyle \int _2^4 2x^3+4x^2 dx\\\displaystyle \int _2^4 2x^3dx+\int _2^4 4x^2dx\\\left.2\dfrac{x^4}{4}\right|_2^4+\left.4\dfrac{x^3}{3}\right|_2^4\\64\times 2-8+\dfrac{4^4}3-\dfrac{32}{3}\\120- \dfrac{224}{3}=192.6$$
  • Question 4
    1 / -0
    If the curves $$y=x^3+ax$$ and $$y=bx^2+c$$ pass through the point $$(-1, 0)$$ and have common tangent line at this point, then the value of $$a+b$$ is?
    Solution
    As the curve pass through the point $$P(-1,0)$$
    $$0 = -1-a$$
    $$\implies a = -1$$
    $$0 = b+c$$
    Common tangent at this point 
    $$\cfrac{dy}{dx} = 2bx$$ and $$\cfrac{dy}{dx} = 3x^2+a = 3-1 = 2$$
    $$2bx = 2$$
    $$-2b = 2$$
    $$b = -1$$
    $$a+b = -2$$
  • Question 5
    1 / -0
    The area (in sq. units) of the region $$\{ x \in R:x \ge ,y \ge 0,y \ge x - 2\ $$  and  $$y \le \sqrt x \} $$, is
    Solution
    The given reqion $$\{x\in R: x\geq 0, y\geq 0, y\geq x-2 and y\leq \sqrt{x}\}$$

    Here $$y\geq x-2$$ and $$y\leq \sqrt{x}$$

    $$\Rightarrow x-2\leq y\leq \sqrt{x}$$

    Suppose

    $$\Rightarrow y=x-2$$ …….$$(1)$$ and $$y=\sqrt{x}$$ …………$$(2)$$

    From $$(1)$$ and $$(2)$$

    $$\Rightarrow x-2=\sqrt{x}$$

    $$\Rightarrow (x-2)^2=(\sqrt{x})^2$$ [squaring both sides]

    $$\Rightarrow x^2+4-4x=x$$

    $$\Rightarrow x^2-4x+4-x=0$$

    $$\Rightarrow x(x-4)-1(x-4)=0$$

    $$\Rightarrow (x-1)(x-4)=0$$

    $$\therefore x=1, 4$$

    At $$x=1$$, from $$(1)$$, $$y=1-2=-1$$ but $$y\geq 0$$

    $$\therefore x=1$$ is neglected

    At $$x=4$$, from $$(1)$$, $$y=4-2=2$$

    $$\therefore$$ Area of the region $$=\displaystyle\int^4_0\{\sqrt{x}-(x-2)\}dx=\displaystyle\int^4_0(x^{\dfrac{1}{2}}-x+2)dx$$

    $$=\left[\dfrac{x^{\dfrac 12+1}}{\dfrac 12+1}-\dfrac{x^2}{\alpha}+2x\right]^4_0$$

    $$=\dfrac{4^{3/2}}{\dfrac 32}-\dfrac{4^2}{2}+2(4)-0+0-0$$

    $$=\dfrac{2}{3}\times 8-8+8=\dfrac{16}{3}$$.
  • Question 6
    1 / -0
    The area of the plane region bounded by the curves  $$x + 2 y ^ { 2 }= 0 \text { and } x + 3 y ^ { 2 } = 1$$
    Solution

    $$\begin{array}{l} 1-3{ y^{ 2 } }=-2{ y^{ 2 } }\Rightarrow { y^{ 2 } }=1\, \therefore y=\pm 1 \\ y=-1\, \, \Rightarrow x=-2 \\ y=1\, \, \, \, \Rightarrow x=-2 \\ The\, \, bounded\, \, region\, \, is\, as\, under \\ The\, \, desired\, \, area\, \, =2\int  _{ 0 }^{ 1 }{ \left[ { \left( { 1-3{ y^{ 2 } } } \right) -\left( { -2{ y^{ 2 } } } \right)  } \right]  }dy \\ =22\int  _{ 0 }^{ 1 }{ \left[ { \left( { 1-{ y^{ 2 } } } \right)  } \right]  }dy=2\left[ { y-\cfrac { { { y^{ 3 } } } }{ 3 }  } \right] _{ 0 }^{ 1 } \\ =2\times \cfrac { 2 }{ 3 } =\cfrac { 4 }{ 3 } sq.\, units \end{array}$$

    Hence, this is the answer.

  • Question 7
    1 / -0
    What is the area of the region enclosed between the curve $$y^2=2x$$ and the straight line $$y=x$$ ?
    Solution
    Given,

    $$y^2=2x$$

    $$y=x$$

    $$\therefore x^2=2x$$

    $$x=2$$

    area $$=\int_{0}^{2}(\sqrt{2x})-x$$

    $$=\sqrt{2}\left [ \dfrac{x^{\frac{3}{2}}}{\frac{3}{2}} \right ]_0^2 - \left [ \dfrac{x^2}{2} \right ]_0^2$$

    $$=\sqrt{2}\dfrac{4\sqrt{2}}{3}-\dfrac{2^2}{2}$$

    $$=\dfrac{8}{3}-2$$

    $$=\dfrac{2}{3}$$sq.units
  • Question 8
    1 / -0

    The area bounded by the parabola $$y=x^{2}$$ and the straight line $$\mathrm{y}=2\mathrm{x}$$ is
    Solution
    $$\displaystyle \int _{ 0 }^{ 2 }{ \left( 2x-{ x }^{ 2 } \right) dx } ={ \left[ \frac { 2{ x }^{ 2 } }{ 2 } -\frac { { x }^{ 3 } }{ 3 }  \right]  }_{ 0 }^{ 2 }=\frac { 4 }{ 3 } $$

  • Question 9
    1 / -0
    The area bounded by the two parabolas $$y^{2}=8x$$ and $$x^{2}=8y$$ is
    Solution
    $$y^{2}=8x$$ and $$x^{2}=8y$$
    the points of intersection
    $$x^2/8=\sqrt{8x}$$
    $$\dfrac{x^3}{8^2}=8$$
    x=0 and x=8
    So, area b//w curves is
    $$\overset{8 }{\underset{0}{\int}}(\sqrt{8x}-x^2/8)dx$$
    $$\sqrt{8}\overset{8 }{\underset{0}{\int}}\sqrt{x}dx-\overset{8 }{\underset{0}{\int}}\left ( \dfrac{x^3}{8} \right )dx=\dfrac{2\sqrt{8}}{3}(x)^{3/2}|_{0}^{8}-1/8\dfrac{x^3}{3}|_{0}^{8}$$
    $$2/3 8^2-1/8(8^3/3)$$
    $$=\dfrac{2.8^2}{3}-8^2/3=\dfrac{64}{3} sq\: units$$

  • Question 10
    1 / -0
    The area of the region bounded by the curve $$y=x^{2}+1$$ and $$y=2x-2$$ between $${x}=-1$$ and $${x}=2$$ is:
    Solution
    We have to find area of the region bounded by curves $$y=x^{2}+1$$ and $$y=2x-2$$ between $$\:x=-1\: and\: x=2$$
    To find points of intersections, if any, for the parabola and the straight line we solve both simultaneously.
    $$x^2+1=2x-2$$
    $$ \Rightarrow x^2-2x+3=0$$, which has no real solutions. Hence, no points of intersection for the parabola and the straight line.
    From the figure, the graph of $$y=x^2+1$$ will be always above the graph of $$y=2x-2$$. 
    Hence the required area is $$\overset{2  }{\underset{-1}{\int}}[(x^{2}+1)-(2x-2)]dx$$

    $$\overset{2  }{\underset{-1}{\int}}(x^2-2x+3)dx$$

    $$=\dfrac{x^3}{3}|_{-1}^{2}-x^2|_{-1}^{2}+3x|_{-1}^{2}$$

    $$=3-(3)+9$$

    $$=9\: sq \:units.$$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now