Self Studies

Application of Integrals Test - 14

Result Self Studies

Application of Integrals Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by $$3x\pm 4y\pm 6=0$$ in sq. units is
    Solution
    Required area $$= 4\times$$ Area of triangle $$OAB$$ $$=4\times\cfrac{1}{2}\times 2\times \cfrac{3}{2}=6 $$ sq. units

  • Question 2
    1 / -0
    The area between the curve $$y^{2}=9x$$ and the line $$y=3x$$ is
    Solution
    $$y^{2}=9x$$ and the line $$y=3x$$
    $$\overset{1 }{\underset{0}{\int}}(3\sqrt{x}-3x)dx$$
    $$3\overset{1 }{\underset{0}{\int}}\sqrt{x}dx-3\overset{1 }{\underset{0}{\int}}x\:dx$$
    $$\Rightarrow 3\times\dfrac{2}{3}x^{3/2}|_{0}^{1}-3x^2/2|_{0}^{1}$$
    $$=6/3-3/2=1/2 \:sq \:units$$.

  • Question 3
    1 / -0
    The area of the smaller part of the circle $${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$$, cut off by the line $$\displaystyle x=\frac { a }{ \sqrt { 2 }  } $$, is given by:
    Solution
    Required area $$\displaystyle 2\int _{ \frac { a }{ \sqrt { 2 }  }  }^{ a }{ ydx } =2\int _{ \frac { a }{ \sqrt { 2 }  }  }^{ a }{ \sqrt { { a }^{ 2 }-{ x }^{ 2 } } dx } $$
    $$\displaystyle =2{ \left[ \frac { x }{ 2 } \sqrt { { a }^{ 2 }-{ x }^{ 2 } } +\frac { { a }^{ 2 } }{ 2 } \sin ^{ -1 }{ \frac { x }{ a }  }  \right]  }_{ \frac { a }{ \sqrt { 2 }  }  }^{ a }$$
    $$\displaystyle =2\left[ \frac { { a }^{ 2 } }{ 2 } .\frac { \pi  }{ 2 } -\left( \frac { a }{ 2\sqrt { 2 }  } .\frac { a }{ \sqrt { 2 }  } +\frac { { a }^{ 2 } }{ 2 } .\frac { \pi  }{ 4 }  \right)  \right] $$
    $$\displaystyle =\frac { { a }^{ 2 } }{ 2 } \left( \frac { \pi  }{ 2 } -1 \right) $$

  • Question 4
    1 / -0
    The area of the curve $$x=a\cos^{3}t$$,$$y=b\sin^{3}t$$ in sq. units is :
    Solution
    required area $$=\left|4\int_{0}^{a}y dx\right|$$

    $$=\left|4\int_{0}^{\frac {\pi}{2}}y \dfrac {dx}{dt}dt\right|$$

    $$=\left|4\int_{\frac {\pi}{2}}^{0}b\sin ^3t\cdot 3a \cos ^2t(-\sin t) dt\right|$$

    $$=12ab\int_{0}^{\frac {\pi}{2}}\sin ^4t\cdot \cos ^2t dt$$

    $$=12ab\dfrac{(4-1)(4-3)(2-1)}{6 \times 4 \times 2}\dfrac{\pi}{2}$$      [using reduction formula]

    $$=\dfrac{3ab\pi}{8}$$

  • Question 5
    1 / -0
    The area bounded by the parabola $$y^{2}=4x$$ and its latusrectum is:
    Solution
    Area bounded=$$2\overset{1}{\underset{0}{\int}}2\sqrt{x}\: dx$$
    Area bounded= $$2\left ( 2\times \dfrac{2}{3} \right )=2(4/3)=8/3$$

  • Question 6
    1 / -0
    Area of the region $$R=\{[(x,y)/x^{2}\leq y\leq x]\}$$ is
    Solution
    Given curve $$x^{2}=y$$ and line $$y=x$$
    Point of intersection of line and curve is (0,0) and (1,1)

    Area of shaded region $$= \int_{0}^{1} x{dx}-\int_{0}^{1} x^{2}{dx}$$

    $$\displaystyle A=[\displaystyle\frac{x^{2}}{2}]_{0}^{1} -[\displaystyle\frac{x^{3}}{3}]_{0}^{1} $$

    $$A=\displaystyle \frac{1}{6}$$ sq.units

  • Question 7
    1 / -0
    Area of the region bounded by $$x=|y+4|$$ and $$\mathrm{y}$$ axis is sq. units
    Solution
    $$x=|y+4|$$
    the area of the shaded region
    $$8\times \dfrac {1}{2}\times 4=16 sq. units.$$

  • Question 8
    1 / -0
    The area of the region between the curves $$y=x^{2}$$ and $$y=x^{3}$$ is
    Solution
    $$y=x^{2}$$ and $$y=x^{3}$$
    $$\overset{1 }{\underset{0}{\int}}(x^2-x^3)dx$$

    $$=\frac{x^3}{3}|_{0}^{1}-\frac{x^4}{4}|_{0}^{1}$$

    $$=(1/3-0)-(1/4-0)$$

    $$=1/3-1/4=1/12 sq \:units$$

  • Question 9
    1 / -0

    The area enclosed between $$y=\sin 2x,y=\sqrt{3}\sin x$$ between $$x=0$$ and $$x=\displaystyle \frac{\pi}{6}$$ is
    Solution
    $$y=\sin 2x,y=\sqrt{3}\sin x$$ $$x=0$$ and $$x=\displaystyle \frac{\pi}{6}$$
    $$\sin 2x=\sqrt{3}\sin x$$
    $$2\cos x=\sqrt{3}$$
    $$\cos x=\sqrt{3/2}$$
    $$x=\displaystyle \frac{\pi}{6}$$
    $$\overset{\pi /6}{\underset{0}{\int}}(\sin 2x-\sqrt{3}\sin x)dx$$
    $$\sin^2x|_{0}^{\pi /6}+\sqrt{3}\cos x|_{0}^{\pi /6}$$
    $$1/4+\sqrt{3}\left ( \frac{\sqrt{3}}{2}-1 \right )$$
    $$1/4+3/2-\sqrt{3}$$
    $$7/4-\sqrt{3}$$
  • Question 10
    1 / -0
    $$AOB$$ is the positive quadrant of the ellipse $$\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ where $$\mathrm{O}\mathrm{A}={a},\ {O}\mathrm{B}={b}$$. Then area between the arc $$\mathrm{A}\mathrm{B}$$ and chord $$\mathrm{A}\mathrm{B}$$ of the ellipse is
    Solution
    The area between the chord $$AB$$ and arc $$AB$$ of ellipse will be
    Area of sector $$AOB -$$ Area  of $$\triangle$$ AOB
    $$=\dfrac{\pi ab}{4}-\dfrac12\times a\times b$$

    $$=\dfrac{\pi ab}{4}-\dfrac{2ab}{4}=\dfrac14ab (\pi-2)\ sq\: units$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now