Self Studies

Application of Integrals Test - 16

Result Self Studies

Application of Integrals Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by tangent, normal and x-axis at $$\mathrm{P}(2,4)$$ to the curve $$y=x^{2}$$
    Solution
    Slope of the tangent at $$(2,4)$$
    $$=\dfrac{dy}{dx}|_{x=2}$$

    $$=4$$.

    Hence slope of normal at $$(2,4)$$ is $$\dfrac{-1}{4}$$.

    Therefore equation of tangent will be 
    $$y-4=4(x-2)$$
    $$y-4=4x-8$$
    $$4x-y=4$$

    Hence it cuts the x axis at $$(1,0)$$.

    Equation of normal will be $$y-4=\dfrac{-1}{4}(x-2)$$
    $$4y-16=-x+2$$
    $$x+4y=18$$.

    Hence it cuts the x axis at $$(18,0)$$.

    Now the normal and tangent meet each other at $$(2,4)$$.

    Since normal is perpendicular to the tangent it is a right angled triangle.
    The coordinates are $$(1,0),(18,0),(2,4)$$.

    Hence
    Length of hypotenuse= 17.
    Length of base =$$\sqrt{17}$$
    Length of height =$$\sqrt{272}=4\sqrt{17}$$.

    Hence 
    $$Area=\dfrac{1}{2}(b\times h)$$

    $$\dfrac{4\sqrt{17}\times \sqrt{17}}{2}$$

    $$=2\times17$$
    $$=34$$ sq units.
  • Question 2
    1 / -0
    The area in square units bounded by the curves $$y=x^{3},\ y=x^{2}$$ and the ordinates $${x}=1, {x}=2$$ is
    Solution
    The given curves are $$y=x^3$$ and $$y=x^2$$
    And the limits of $$x$$ are $$x=1, x=2$$
    Then, the required area is
    $$A=\displaystyle \int_{1}^{2}(x^3-x^2)dx$$
    $$=\displaystyle \int_{1}^{2} x^3\:dx-\int_{1}^{2}x^2\:dx$$
    $$=\left[\dfrac{x^4}{4}\right]_{1}^{2}-\left[\dfrac{x^3}{3}\right]_{1}^{2}$$
    $$=\left ( \dfrac{16}{4}-\dfrac{1}{4} \right )-\left ( \dfrac{8}{3}-\dfrac{1}{3} \right )$$
    $$=\dfrac{15}{4}-\dfrac{7}{3}=\dfrac{17}{12}$$ sq units

  • Question 3
    1 / -0
    Area of the region bounded by $$y=|x|$$ and $$y=1-|x|$$ is
    Solution
     

  • Question 4
    1 / -0
    The area, in square units of the region bounded by the parabolas $$y^{2}=4x$$ and $$x^{2}=4y$$ is
    Solution
    The given parabolas are $$y^{2}=4x$$ and $$x^{2}=4y$$
    The point of intersection of $$x^2=4y$$ and $$y^2=4x$$ will be 
    $$x=4$$ and $$x=0$$
    Then, the required area will be
    $$\overset{4}{\underset{0}{\displaystyle \int}}\left (\sqrt{4x} -\dfrac{x^2}{4} \right )dx$$
    $$=\left[\sqrt{4}\times\dfrac{2}{3}x^{3/2}-\dfrac{x^3}{12}\right]_{0}^{4}$$
    $$=\dfrac{4\times 8}{3}-\dfrac{4^3}{12}$$

    $$=\dfrac{32}{3}-\dfrac{16}{3}$$

    $$=\dfrac{16}{3}\:sq\:units$$

  • Question 5
    1 / -0

    Area of the figure bounded by Y-axis, $$y=Sin^{-1}x,\ y=Cos^{-1}x$$ and the first point of intersection from the origin is
    Solution
    The curve $$y=\sin ^{ -1 }{ x } $$ and $$y=\cos ^{ -1 }{ x } $$ intesect at $$\displaystyle \left( \frac { 1 }{ \sqrt { 2 }  } ,\frac { \pi  }{ 4 }  \right) $$
    Thus area $$\displaystyle =\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \left( \cos ^{ -1 }{ x } -\sin ^{ -1 }{ x }  \right) dx } $$
    $$\displaystyle ={ \left[ x\cos ^{ -1 }{ x }  \right]  }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }-\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ x.\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx } +{ \left[ x\sin ^{ -1 }{ x }  \right]  }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }+\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx } \\ =\sqrt { 2 } -1$$
  • Question 6
    1 / -0
    The area bounded by the two curves $$y=\sqrt{x}$$ and  $$x=\sqrt{y}$$ is:
    Solution
    $$y=\sqrt{x}$$ and  $$x=\sqrt{y}$$
    Area $$=\overset{1}{\underset{0}{\int}}(\sqrt{x}-x^2)dx$$
    $$\quad\quad=\frac{2}{3}(1)-1/3\\\quad\quad=1/3\:sq\:units$$

  • Question 7
    1 / -0
    The area of the region bounded by $$x^{2}=8y,\ x=4$$ and the $$\mathrm{x}$$-axis is
    Solution
    $$y=\dfrac{x^2}{8};x=4$$

    Area $$=\overset{4}{\underset{0}{\int}}\dfrac{x^2}{8}\:dx$$
    $$=\dfrac{x^3}{24}|_{0}^{4}$$
    $$=\dfrac{4^3}{24}\\=\dfrac{64}{24}\\=\dfrac83\:sq\:units$$

  • Question 8
    1 / -0
    The area of the region bounded by $$y=x,\ y=x^{3}$$ is:
    Solution
    The curve intersect at $$x=-1,y=-1$$; $$x=0,y=0$$ and $$x=1,y=1$$
    Therefore area $$\displaystyle =-\int _{ -1 }^{ 0 }{ \left( { x }^{ 3 }-x \right) dx } +\int _{ 0 }^{ 1 }{ \left( x-{ x }^{ 3 } \right) dx } $$
    $$\displaystyle =-{ \left[ \frac { { x }^{ 4 } }{ 4 } -\frac { { x }^{ 2 } }{ 2 }  \right]  }_{ -1 }^{ 0 }+{ \left[ \frac { { x }^{ 2 } }{ 2 } -\frac { { x }^{ 4 } }{ 4 }  \right]  }_{ 0 }^{ 1 }$$
    $$\displaystyle =-\left( \frac { 1 }{ 4 } -\frac { 1 }{ 2 }  \right) +\left( \frac { 1 }{ 2 } -\frac { 1 }{ 4 }  \right) =-\frac { 1 }{ 2 } +1=\frac { 1 }{ 2 } $$

  • Question 9
    1 / -0

    The area bounded by the parabola $$x=y^{2}$$ and the line $$y=x-6$$ is
    Solution

    $$x=y^{2}$$ and the line $$y=x-6$$ 
    area in $$QI$$+ area in QIV
    $$|\overset {3 }{ \underset {  -2}{ \int  }  } [(y+6)-y^2]dy|$$
    $$=|\left | \dfrac{y^2}{2} +6y-y^3/3\right |_{-2}^{3}$$
    $$=\left |\dfrac{9}{2} -\dfrac{4}{2}+6(5)-\left [ \dfrac{27}{3} +8/3\right ] \right |$$
    $$\left | \dfrac{5}{2}+30-\left [ \dfrac{35}{3} \right ] \right | = \dfrac{15+180-70}{6} = \dfrac{125}{6}sq\:units.$$

  • Question 10
    1 / -0
    The area between the curve $$y=x^{2}$$ and $$y=x+2$$ is:
    Solution
    point of intersection $$x^2-x-2=0$$
     2,-1
    $$\overset{2}{\underset{-1}{\int}}(x+2)\:dx -\overset{2}{\underset{-1}{\int}}x^2\:dx$$
    $$3/2+2(3)-\left [ \frac{8}{3}+1/3 \right ]$$
    $$3/2+6-3$$
    $$6-3/2=9/2\:sq\:units$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now