Self Studies

Application of Integrals Test - 18

Result Self Studies

Application of Integrals Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the triangle formed by the positive X-axis and the normal and tangent to the circle $$x^{2}+y^{2}=4$$ at $$(1,\sqrt{3})$$ in sq. units is:
    Solution
    the tangent of $$x^{2}+y^{2}=4$$ at $$(1,\sqrt{3}) \:is\: \sqrt{3}y+x=4$$ and that of normal is $$y=\sqrt{3}x$$
    So, the area of
    $$\triangle ^{le}=1/2\times4\times\sqrt{3}=2\sqrt{3}\:sq\;units$$

  • Question 2
    1 / -0
    I : The area bounded by $$ x=2\cos\theta,\  y=3\sin\theta$$ is $$ 36\pi$$ sq. units.
    II: The area bounded by $$ x=2\cos\theta,\  y=2\sin\theta$$ is $$ 4\pi$$ sq.units.
    Which of the above statement is correct?
    Solution

    $$I$$:    $$\left ( \dfrac{x}{2} \right )^2+\left ( \dfrac{y}{3} \right )^2=1$$
                 $$Area=\pi \times 2 \times3$$
                 $$=6\pi sq\:units.$$
    $$I$$      $$\left ( \dfrac{x}{2} \right )^2+\left ( \dfrac{y}{2} \right )^2=1$$
                  $$\Rightarrow x^2+y^2=4$$
                  $$\pi (2)^2$$
                  $$=4\pi\:sq\:units.$$

  • Question 3
    1 / -0

    The area between the curves $$y=\tan x$$,$$y=\cot x$$ and $$\mathrm{x}$$-axis $$(0\displaystyle \leq x\leq\frac{\pi}{2})$$ is
    Solution
    $$y=\tan x$$,$$y=\cot x$$ and $$\mathrm{x}$$-axis $$(0\displaystyle \leq x\leq\frac{\pi}{2})$$
    $$\overset {\pi/4}{ \underset { 0}{ \int  }  } \tan x\:dx+\overset {\pi/2}{ \underset { \pi/4}{ \int  }  } (\cot x)dx$$
    $$-\log |\cos x||_{0}^{\pi /4}+\log|\sin x||_{\pi /4}^{\pi /2}$$
    $$-\log(1/\sqrt{2})+\log(1)-\log(1/\sqrt{2})$$
    $$\log 2$$

  • Question 4
    1 / -0
    I: The area bounded by the line $$\mathrm{y}=\mathrm{x}$$ and the curve $$y=x^{3}$$ is $$1/_{2}$$ sq. units.
    II: The area bounded by the curves $$y=x^{3}$$ and $$ y=x^{2}$$and the ordinates $$x=1$$, $$x=2$$ is $$\frac{7}{12}$$ sq. units.
    Which of the above statement is correct?
    Solution
    $$SI$$:           $$\overset {1}{ \underset { 0 }{ \int  }  } (x-x^3)dx=\left (\dfrac{x^2 }{2}-\dfrac{x^4}{4} \right )\bigg|_{0}^{1}$$
                                                      $$=2(\dfrac12-\dfrac14)=2(1/4)sq\:units$$
                                                                       $$=\dfrac12sq\:units.$$
    $$SII:$$          $$\overset {2}{ \underset { 1 }{ \int  }  } (x^3-x^2)dx$$
                                      $$=\dfrac{x^4}{4}-\dfrac{x^3}{3}\bigg|_{1}^{2}$$
                                      $$=\left ( \dfrac{2^4}{4}-\dfrac{2^3}{3} \right )-\left ( \dfrac{1}{4}-\dfrac{1}{3} \right )$$
                                      $$=\dfrac{15}{4}-\dfrac{7}{3}=\dfrac{45-28}{12}=\dfrac{17}{12}sq\:units.$$
                                       
    only $$I$$ is true
  • Question 5
    1 / -0
    Assertion(A): The area bounded by $$y^{2}=4x$$ and $$y=x$$ is $$\displaystyle \frac{8}{3}$$ sq. units.

    Reason(R): The area bounded by $$y^{2}=4ax$$ and $$y=mx$$ is $$\displaystyle \frac{8a^{2}}{3m^{3}}$$ sq. units.
    Solution
    $$\overset {4a/m^2 }{ \underset { 0 }{ \int  }  } (\sqrt{4x}-x)dx$$
    $$\frac{2}{3}\times2a^{1/2}x^{3/2}-\frac{x^2}{2}|_{0}^{4a/m^2}$$
    $$=8a^2/3m^3$$  (R is true)
    A is true by inspection
    So, A,R are true and R explains A.

  • Question 6
    1 / -0
    Area bounded by $$\displaystyle \mathrm{f}(\mathrm{x})=\max.(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x})$$ $$\displaystyle \forall 0\leq x\leq\frac{\pi}{2}$$ and the co-ordinate axis is equal to:
    Solution
    $$\displaystyle

    \mathrm{f}(\mathrm{x})=\max.(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x})$$
    $$\displaystyle \forall 0\leq x\leq\frac{\pi}{2}$$
    $$\overset {\pi/4}{ \underset {  0}{ \int  }  } \cos x\:dx+\overset {\pi/2}{ \underset {  \pi/4}{ \int  }  } \sin x\:dx$$
    $$\sin x|_{0}^{\pi /4}-cos x|_{0}^{\pi /4}$$
    $$=(1/\sqrt{2})-[0-1/\sqrt{2}]$$
    $$=\sqrt{2}sq\:units.$$

  • Question 7
    1 / -0

    The area lying in the first quadrant between the curves $$x^{2}+y^{2}=\pi^{2}$$ and $$y=\sin x$$ and y- axis is
    Solution
    Area of the circle with radius $$\pi$$ is $${\pi}^{3}$$
    Then, area of the arc of circle in the $first quadrant is $$\dfrac{\pi^3 }{4}sq\:units$$ ....... $$(i)$$
    Also, the area of the curve $$y=\sin x$$ is $$\overset {\pi  }{ \underset { 0 }{ \int  }  } \sin x\:dx=2\:sq\:units$$ ....... $$(ii)$$
    So, the required area is obtained by taking out $$(ii)$$ from $$(i)$$ i.e. $$(i)-(ii)$$
    Thus, the reuqired area
    $$=\dfrac{\pi^3 }{4}-2 = \dfrac{\pi ^3-8}{4}sq\:units.$$

  • Question 8
    1 / -0

    The area of the portion of the circle $$x^{2}+y^{2}=1$$, which lies inside the parabola $${y}^{2}=1-x$$ is
    Solution
    The given curve intersect at $$(0,1)$$ and $$(0,-1)$$
    Therefore, the required area $$\displaystyle =\left[\frac { 1 }{ 2 } \pi { r }^{ 2 }\right]_{0}^{1}+2\int _{ 0 }^{ 1 }{ \left( 1-{ y }^{ 2 } \right) dy } $$
    $$\displaystyle =\frac { 1 }{ 2 } \pi { \left( 1 \right)  }^{ 2 }+2{ { \left[ y-\frac { { y }^{ 3 } }{ 3 }  \right] } }_{ 0 }^{ 1 }=\frac { \pi  }{ 2 } +\frac { 4 }{ 3 } $$

  • Question 9
    1 / -0
    Area of the region bounded by $$y=e^{x},y=e^{-x},x=0$$ and $$x=1$$ in sq. units is:
    Solution
    $$y=e^{x},y=e^{-x}$$
    Then, area bounded by these two curves s given by
    $$A=\displaystyle \overset{1}{\underset{0}{\int}}(e^{x}-e^{-x})dx=\overset{1}{\underset{0}{\int}}e^{x}dx-\overset{1}{\underset{0}{\int}}e^{-x}dx$$
    $$=(e^1-1)+1(e^{-1}-1)$$
    $$=e+e^{-1}-2$$
    $$=\left(\sqrt{e}-\dfrac{1}{\sqrt{e}}\right)^2sq\:units.$$

  • Question 10
    1 / -0
    The area of the region bounded by the curves $$\mathrm{y}=\sqrt{x}$$ and $$y=\sqrt{4-3x}$$ and $$\mathrm{y}=0$$ is:
    Solution

    $$\mathrm{y}=\sqrt{x}$$ ; $$y=\sqrt{4-3x}$$
    $$\overset{1}{\underset{0}{\int}}\sqrt{x}dx+\overset{4/3}{\underset{1}{\int}}\sqrt{4-3x}dx$$
    $$\dfrac{2}{3}1+\dfrac{2}{9}(4-3x)^{3/2}|_{1}^{4/3}$$
    $$\dfrac{2}{3}-\dfrac{2}{9}(0-1)$$
    $$=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}sq\:units$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now