Self Studies

Application of Integrals Test - 19

Result Self Studies

Application of Integrals Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the curves $$y=xe^{x}, y=xe^{-x}$$ and the line $$\left| x \right| =1,y=0$$ is:
    Solution
    Since $$\left| x \right| =1\quad \therefore x=\pm 1$$
    $$y=x{ e }^{ \left| x \right|  }=\begin{cases} { x }e^{ -x }\quad -1<x<0 \\ { xe }^{ x }\quad 0\le x<1 \end{cases}$$
    Therefore $$=\left| \int _{ -1 }^{ 0 }{ { xe }^{ -x } } dx \right| +\left| \int _{ 0 }^{ 1 }{ { xe }^{ x } } dx \right| \\ =\left| \left[ { -xe }^{ -x }-{ e }^{ -x } \right] _{ -1 }^{ 0 } \right| +\left| \left[ { xe }^{ x }-{ e }^{ x } \right] _{ 0 }^{ 1 } \right| =2$$
  • Question 2
    1 / -0
    The area of the region bounded by $$y=|x-1|$$ and $$\mathrm{y}=1$$ in sq. units is:
    Solution
    $$y=|x-1|$$
    area of the $$\triangle ^{le}=1/2 \:base\times\:height$$
    $$=1/2(2)(1)=1sq\:unit.$$

  • Question 3
    1 / -0

    Area bounded by the curve $$\mathrm{y}=\mathrm{x}+\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x}$$ and its inverse function between the ordinates $$\mathrm{x}=0$$ and $$\mathrm{x}=2\pi$$ is
    Solution
    Inverse function is the mirror image with respect to $$y=x$$
    Then area bounded by $$x+\sin x$$ and its inverse function is $$4\int _{ 0 }^{ \pi  }{ \left( x+\sin { x } -x \right) dx } =8$$
  • Question 4
    1 / -0
    Area of the region bounded by $$y=x-[x],\ y=[x]$$ and $$\mathrm{x}$$-axis in $$[$$0,2 $$]$$ is:
    Solution
    $$y=x-[x],\ y=[x]$$
    The parallelogram Area=$$2(1/2\times1\times1)$$
                                           $$=1\:sq\:units.$$

  • Question 5
    1 / -0
    The area bounded by the parabolas $${y}=4{x}^{2},\ y=\displaystyle \dfrac{x^{2}}{9}$$ and the line $${y}=2$$ is
    Solution

    The area bounded by the curves $${y}=4{x}^{2},\ y=\displaystyle \dfrac{x^{2}}{9}$$ and the line $$y=2$$ is 
    $$A=2\times \displaystyle \overset{2}{\underset{0}{\int}}\left (3\sqrt{y}-\dfrac{\sqrt{y}}{2}  \right )dy$$
    $$=2\left [\left[\dfrac{2}{3} 3  y^{3/2}\right]_{0}^{2} -\left[\dfrac{2}{3}\dfrac{y^{3/2}}{2} \right ]_{0}^{2}  \right ]$$
    $$=2\left [ 2(\sqrt{8})-\dfrac{\sqrt{8}}{3} \right ]$$
    $$=2\left [ \sqrt{8}\left ( \dfrac{5}{3} \right ) \right ]=\dfrac{20\sqrt{2}}{3}sq\:units.$$

  • Question 6
    1 / -0
    The area between the parabolas $$y^{2}=4a(x+a)$$ and $$y^{2}=-4a(x-a)$$ in sq. units is
    Solution
    $$y^{2}=4a(x+a)$$ and $$y^{2}=-4a(x-a)$$
    $$4\overset{0}{\underset{-a}{\int}}\sqrt{4a(x+a)}dx=4\times 2\sqrt{a}\times \dfrac{2}{3}(x+a)^{3/2}|_{-a}^{0}$$
                                            $$=\dfrac{16}{3}\sqrt{a}(a^{3/2})$$
                                            $$=\dfrac{16a^2}{3}sq\:units.$$

  • Question 7
    1 / -0
    The area of the portion of the circle $${ x }^{ 2 }+{ y }^{ 2 }=1$$, which lies inside the parabola $${ y }^{ 2 }=1-x$$, is
    Solution
    The required area
    $$\displaystyle =2\int _{ 0 }^{ 1 }{ \sqrt { 1-x } dx } +2.\left( \frac { 1 }{ 4 } .\pi .{ 1 }^{ 2 } \right) $$
    $$\displaystyle =-2{ \left[ \frac { 2{ \left( 1-x \right)  }^{ 3/2 } }{ 3 }  \right]  }_{ 0 }^{ 1 }+\frac { \pi  }{ 2 } =\frac { \pi  }{ 2 } -\frac { 4 }{ 3 } $$
  • Question 8
    1 / -0
    The area bounded by the parabolas $${ y }^{ 2 }=4a\left( x+a \right) $$ and $${ y }^{ 2 }=-4a\left( x-a \right) $$ is:
    Solution
    The required area
    $$\displaystyle =4\int _{ 0 }^{ a }{ \sqrt { 4a\left( a-x \right)  } dx } $$
    $$\displaystyle =4\times 2\sqrt { a } .{ \left[ \frac { -2{ \left( a-x \right)  }^{ 3/2 } }{ 3 }  \right]  }_{ 0 }^{ a }=\frac { 16 }{ 3 } { a }^{ 2 }$$

  • Question 9
    1 / -0
    The area bounded by the curve $$x^2=4y$$ and straight line $$x=4y-2$$ is
    Solution
    (x+24)=x24(x+24)=x24
  • Question 10
    1 / -0
    The area bounded by the curve $$f(x) = ce^x(c > 0)$$, the x-axis and the two ordinates x = p and x = q is proportional to
    Solution
    Area = $$\int _{ p }^{ q }{ { ce }^{ x } } $$
    $$=c({ e }^{ q }-{ e }^{ p })$$
    $$= f(q)-f(p) = |f(p) - f(q)|$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now