Self Studies

Application of Integrals Test - 20

Result Self Studies

Application of Integrals Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the area enclosed by the parabolas $$\displaystyle\ y= a-x^{2}$$ and $$\displaystyle\ y=x^{2}$$ is $$18\sqrt{2}$$ sq.units. Find the value of 'a'
    Solution
    The intersection point is $$(\sqrt{\dfrac{a}{2}},\dfrac{a}{2}),(-\sqrt{\dfrac{a}{2}},\dfrac{a}{2})$$
    $$\int y_{1}-y_{2}.dx$$
    $$\int a-2x^{2}.dx$$
    $$=[ax-\dfrac{2x^{3}}{3}]_{-\sqrt{\frac{a}{2}}} ^{\sqrt{\frac{a}{2}}}$$

    $$=2[ax-\dfrac{2x^{3}}{3}]_{0} ^{\sqrt{\frac{a}{2}}}$$

    $$2[\dfrac{a\sqrt{a}}{\sqrt{2}}-\dfrac{2a\sqrt{a}}{6\sqrt{2}}]$$

    $$=\sqrt{2}[a\sqrt{a}-\dfrac{a\sqrt{a}}{3}]$$

    $$=\dfrac{2\sqrt{2}a\sqrt{a}}{3}=18\sqrt{2}$$

    $$2a\sqrt{a}=54$$
    $$a\sqrt{a}=27=3^{3}$$
    Squaring both sides, we get
    $$a^{3}=3^{6}$$
    $$a=3^{2}$$
    Hence
    $$a=9$$.
  • Question 2
    1 / -0
    The ratio in which the area bounded by the curves $$y^2=4x$$ and $$x^2=4y$$ is divided by the line $$x = 1$$ is
    Solution
    Area = $$\int _{ 0 }^{ 4 }{ \sqrt { 4x }  } -\frac { { x }^{ 2 } }{ 4 } $$
    = $$2\times \frac { 2 }{ 3 } \times 8-\frac { (4)^{ 3 } }{ 12 } $$
    = $$\frac { 32 }{ 3 } -\frac { 4 }{ 3 } \times 4$$
    = $$\frac { 16 }{ 3 } $$
    $${ A }_{ 1 }=\int _{ 0 }^{ 1 }{ \sqrt { 4x } -\frac { x^{ 2 } }{ 4 }  } $$
    = $$2\times \frac { 2 }{ 3 } \times -\frac { 1 }{ 12 } $$
    = $$\frac { 4 }{ 3 } \times \frac { 1 }{ 12 } =\frac { 15 }{ 12 } $$
    $${ A }_{ 2 }=\frac { 16 }{ 3 } -\frac { 15 }{ 12 } $$
    = $$\frac { 64-15 }{ 12 } $$
    = $$\frac { 49 }{ 12 } $$
    $$\frac { { A }_{ 1 } }{ { A }_{ 2 } } =\frac { 15 }{ 49 } $$

  • Question 3
    1 / -0
    The area of the region bounded by$$y=\mid x-1\mid $$ and $$ y=1$$ is
    Solution
    $$ y=\left|x-1\right|$$
    for $$x\gt1, y=x-1$$
    for $$ x\lt1, y=-x+1$$
    Here area can be calculated as the area of the triangle.
    Base of triangle,$$b=2$$
    Height of triangle, $$h=1$$
    Area of triangle,$$ A=\dfrac{1}{2}\times b\times h$$
    $$A=\dfrac{1}{2}\times 2\times 1$$
    Area, $$A=1cm^2$$

  • Question 4
    1 / -0
    Semicircles are drawn outside by taking every side of regular hexagon as a diameter. The perimeter of hexagon is 60 cm. Find the area of complete figure formed as such.($$\pi$$ = 3.14) ($$\sqrt3$$ = 1.73)
    Solution
    The area of a hexagon=$$\quad \dfrac { 3\sqrt { 3 }  }{ 2 } { side }^{ 2 }.\quad $$
    There are 6 semicircles=3 circles.
    radius of each circle=r=$$\quad \dfrac { 1 }{ 2 } \times $$side of the hexagon.
    ar.complete figure=ar.hexagon+3(ar.circle).
    Here ,
    perimeter of the regular hexagon=60cm.
    So one side=$$\quad \dfrac { 60 }{ 6 } cm=10cm.\\ \therefore \quad ar.hexagon\\ =\dfrac { 3\sqrt { 3 }  }{ 2 } { side }^{ 2 }\\ =\dfrac { 3\sqrt { 3 }  }{ 2 } { 10 }^{ 2 }{ cm }^{ 2 }\\ =\dfrac { 3\times 1.73\times 100 }{ 2 } { cm }^{ 2 }\\ =259.5{ cm }^{ 2 }.\quad $$
    Again radius of each circle=r=$$\quad \dfrac { 1 }{ 2 } \times $$side of the hexagon= $$\dfrac{10}{2}cm=5cm.$$
    $$\quad ar.(3circles)=3\times \pi \times { r }^{ 2 }\\ =3\times 3.14\times 5\times 5{ cm }^{ 2 }\\ =235.5{ cm }^{ 2 }.\quad $$ 
    So ar.complete figure=ar.hexagon+3(ar.circle).
    $$=(259.5+235.5)$$ $$\quad { cm }^{ 2 }\quad $$
    =495$$\quad { cm }^{ 2 }$$
    Ans- Option A

  • Question 5
    1 / -0
    The area of the region bounded by the curves $$ \displaystyle y=\sqrt{x} $$ and $$ \displaystyle y=\sqrt{4-3x} $$ and $$ \displaystyle y=0 $$ is
    Solution
    From figure required area $$\displaystyle =\int _{ 0 }^{ 1 }{ \sqrt { x } dx } +\int _{ 1 }^{ \frac { 4 }{ 3 }  }{ \sqrt { 4-3x } dx } $$
    $$\displaystyle ={ \left[ \frac { { x }^{ \frac { 3 }{ 2 }  } }{ \frac { 3 }{ 2 }  }  \right]  }_{ 0 }^{ 1 }+{ \left[ -\frac { 1 }{ 3 } \frac { { \left( 4-3x \right)  }^{ \frac { 3 }{ 2 }  } }{ \frac { 3 }{ 2 }  }  \right]  }_{ 1 }^{ \frac { 4 }{ 3 }  }=\frac { 8 }{ 9 } $$

  • Question 6
    1 / -0
    The area bounded by the circle $${ x }^{ 2 }+{ y }^{ 2 }=8$$, the parabola $${ x }^{ 2 }=2y$$ and the line $$y=x$$ in $$y\ge 0$$ is
    Solution
    The required area 
    $$\displaystyle =\int _{ -2 }^{ 2 }{ \sqrt { 8-{ x }^{ 2 } } dx } -\int _{ -2 }^{ 0 }{ \frac { 1 }{ 2 } { x }^{ 2 }dx } -\int _{ 0 }^{ 2 }{ xdx } $$

    $$\displaystyle =2\int _{ 0 }^{ 2 }{ \sqrt { 8-{ x }^{ 2 } } dx } -{ \left[ \frac { { x }^{ 3 } }{ 6 }  \right]  }_{ -2 }^{ 0 }-{ \left[ \frac { { x }^{ 2 } }{ 2 }  \right]  }_{ 0 }^{ 2 }$$

    $$\displaystyle =2{ \left[ \frac { x }{ 2 } \sqrt { 8-{ x }^{ 2 } } +\frac { 8 }{ 2 } \sin ^{ -1 }{ \frac { x }{ 2\sqrt { 2 }  }  }  \right]  }_{ 0 }^{ 2 }-\frac { 4 }{ 3 } -2$$

    $$\displaystyle =2\left[ 2+4.\frac { \pi  }{ 4 }  \right] -\frac { 10 }{ 3 } =\frac { 2 }{ 3 } +2\pi $$

  • Question 7
    1 / -0
    The area bounded by the curve $$ \displaystyle y=\sin x $$ and $$ \displaystyle y=\cos x,\forall 0\leq x\leq \pi /2 $$ is
    Solution

  • Question 8
    1 / -0
    Area bounded by the curves $$ \displaystyle y=xe^{x} $$ and $$ \displaystyle y=xe^{-x} $$ and the line $$ \displaystyle \left| x \right| =1$$ is
  • Question 9
    1 / -0
    The area common to the curves $$\displaystyle y^{2}=x$$ and $$x^{2}=y$$is 
    Solution
    The given curves intersect at
     $$y={ x }^{ 2 }={ y }^{ 4}$$ :$$y=0$$ or $$y=1$$
    $$x={ y }^{ 2 }={ x }^{ 4 }$$ : $$x=0$$ or $$x=1$$
    $$\displaystyle =\int _{ x=0 }^{ x=1 }{ \left( { y }_{ 1 }-{ y }_{ 2 } \right)  } dx=\int _{ x=0 }^{ 1 }{ \left( \sqrt { x } -{ x }^{ 2 } \right)  } dx$$
    $$\displaystyle =\left[ \dfrac { { x }^{ \dfrac { 3 }{ 2 }  } }{ \dfrac { 3 }{ 2 }  } -\dfrac { { x }^{ 3 } }{ 3 }  \right] _{ 0 }^{ 1 }=\dfrac { 2 }{ 3 } -\dfrac { 1 }{ 3 } =\dfrac { 1 }{ 3 } $$

  • Question 10
    1 / -0
    Area of the region bounded by the curves $$y=x-1$$ and $$y=3-|x|$$ is
    Solution
    Consider the curves $$ y = |x-1| $$ & $$ y = 3-|x| $$
    when $$ x< 0 $$
    $$ 3-(-x) = (-x+1) $$
    $$ \Rightarrow 3+x = -x+1 $$
    $$ \Rightarrow 2x = -2 $$
    $$ x = -1 $$
    Put $$ x = -1 $$ in $$ y = |x-1| $$ we have
    $$ y = 2 $$
    When $$ x>0 $$ 
    $$ 3-x = x- 1 $$
    $$ \Rightarrow 3+1 = 2x $$
    $$ x = 2 $$
    put $$ x = 2 $$ in $$ y = |x-1| $$ we have
    $$ y = 1 $$
    Thus pt. of intersection is $$ (-1,2),(2,1) $$
    $$ \therefore $$ required area $$\displaystyle = \int_{-1}^{0}(3+x+x-1)dx+\int_{0}^{1}(3-x+x-1)dx $$
    $$\displaystyle +\int_{1}^{2}3-x-x+1dx $$
    $$\displaystyle \Rightarrow \int_{-1}^{0}(2x+2)dx+\int_{0}^{1}2dx+\int_{1}^{2}(4-2x)dx $$
    $$\displaystyle \Rightarrow \left ( \frac{2x^{2}}{2} \right )^{1}+(2x)_{-1}^{0}+(2x)_{0}^{1}+(4x)_{1}^{2}-\left ( \frac{2x^{2}}{2} \right )_{1}^{2} $$
    $$ \Rightarrow -1+2(-(-1))+2+4(2-1)-(2^{2}-1^{2}) $$
    $$ \Rightarrow -1+2+2+4-3 = \boxed{4} $$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now