Solving the two, we get $$\displaystyle { x }^{ 2 }+6a-16{ a }^{ 2 }=0$$
or $$\displaystyle \left( x+8a \right) \left( x-2a \right) =0$$
$$\therefore \quad x=2a$$
$$\therefore \quad y=\pm 2\sqrt { 3a } $$
The required common area $$=2[APOA]$$
$$=2\int { ydx } +2\int { ydx } $$
$$\displaystyle =2\int _{ 0 }^{ 2a }{ \sqrt { 6a } \sqrt { x } dx } +2\int _{ 2a }^{ 4a }{ \sqrt { { \left( 4a \right) }^{ 2 }-{ x }^{ 2 } } dx } $$
$$\displaystyle =2.\sqrt { 6a } \frac { 2 }{ 3 } \left[ { x }^{ 3/2 } \right] _{ 0 }^{ 2a }+2.\left[ \frac { x }{ 2 } \sqrt { { \left( 4a \right) }^{ 2 }-{ x }^{ 2 } } +\frac { 1 }{ 2 } { \left( 4a \right) }^{ 2 }\sin ^{ -1 }{ \frac { x }{ 4a } } \right] _{ 2a }^{ 4a }$$
$$\displaystyle =2.\sqrt { 6a } \frac { 2 }{ 3 } \left( 2a \right) \sqrt { 2a } +2\left[ \left( 0-a2\sqrt { 3a } \right) +8{ a }^{ 2 }\left( \sin ^{ -1 }{ 1 } -\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] $$
$$\displaystyle =2.2\sqrt { 3 } .\frac { 4 }{ 3 } { a }^{ 2 }+2\left[ -2\sqrt { 3 } { a }^{ 2 }\left( \frac { \pi }{ 2 } -\frac { \pi }{ 6 } \right) \right] $$
$$\displaystyle =\frac { 16 }{ 3 } \sqrt { 3 } { a }^{ 2 }-4\sqrt { 3 } { a }^{ 2 }+16{ a }^{ 2 }\frac { \pi }{ 3 } $$
$$\displaystyle =\frac { 4\sqrt { 3 } { a }^{ 2 } }{ 3 } +\frac { 16\pi { a }^{ 2 } }{ 3 } =\frac { 4{ a }^{ 2 } }{ 3 } \left( 4\pi +\sqrt { 3 } \right) $$