Self Studies

Application of Integrals Test - 22

Result Self Studies

Application of Integrals Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area bounded by $$\displaystyle y=2\sqrt { x } $$ and $$ x=3\sqrt { y } $$ is equal to (in sq. units) 
    Solution
    First we have to find the intersection point.
    Hence, $$2\sqrt{x}=\left (\dfrac{x}{3}\right)^{2}$$
    $$\Rightarrow 18\sqrt{x}=x^{2}$$
    $$\Rightarrow \sqrt{x}(18-x\sqrt{x})=0$$
    $$\Rightarrow x=0$$ and $$x\sqrt{x}=18$$
    $$\Rightarrow x^{3}=18^{2}$$
    Now the area bounded by the curve is
    $$I=\displaystyle \int_{0} ^{18^{\frac{2}{3}}} 2\sqrt{x}-\dfrac{x^{2}}{9} dx$$
    $$=\left [\dfrac{4x^{\frac{3}{2}}}{3}-\dfrac{x^{3}}{27}\right]_{0} ^{18^{\frac{2}{3}}}$$
    $$=\dfrac{4\times 18}{3}-\dfrac{18^{2}}{27}$$
    $$=24-12$$
    $$=12$$ sq units.

  • Question 2
    1 / -0
    The area between the parabola $$y =x^2$$ and the line $$y = x$$ is
    Solution
    For points of intersection of the equations $$y=x^2$$ and $$y=x$$
    $$\therefore  x^2-x=0 \Rightarrow x(x-1)=0$$
    $$x=0$$ or $$x=1\Rightarrow Y=0$$ or $$y =1$$
    Hence, the coordinates of their points of intersection are O(0, 0) and P (1, 1).
    $$\therefore$$ Required area (shaded region)
    $$= \displaystyle \int_0^1 (x - x^2) dx = \left [ \frac{x^2}{2} - \frac{x^3}{3} \right ]_0^1$$
    $$= \displaystyle \left [ \left ( \frac{1}{2} - \frac{1}{3} \right ) - 0 \right ] = \frac{1}{6} $$ sq. units

  • Question 3
    1 / -0
    Area lying in the first quadrant and bounded by the circle $$x^2 + y^2 = 4$$ and the lines $$x = 0$$ and $$x = 2$$ is
    Solution
    The area bounded by the circle and the lines, $$x=0$$ and $$x=2$$, in the first quadrant is represented as shaded region in the plot.
    $$\therefore$$ Area $$OAB=\int_0^2y dx$$
    $$=\displaystyle \int_0^2\sqrt {4-x^2}dx$$
    $$=\left [\dfrac {x}{2}\sqrt {4-x^2}+\dfrac {4}{2}\sin^{-1}\dfrac {x}{2}\right ]_0^2$$
    $$=2\left (\dfrac {\pi}{2}\right )=\pi $$sq. units
    Thus, the correct answer is A.

  • Question 4
    1 / -0
    The area bounded by $${y}^{2}=4x$$ and $${x}^{2}=4y$$ is
    Solution
    The intersection point of a curves $${y}^{2}=4x$$ and $${x}^{2}=4y$$ are $$O(0,0)$$ and $$A(4,4)$$
    $$\therefore$$ Required area $$\displaystyle \int _{ 0 }^{ 4 }{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) dx } $$
    $$=\displaystyle \int _{ 0 }^{ 4 }{ \left( \sqrt { 4x } -\cfrac { { x }^{ 2 } }{ 4 }  \right) dx } $$ 
    $$={ \left[ \cfrac { 2{ x }^{ 3/2 } }{ 3/2 } -\cfrac { { x }^{ 3 } }{ 12 }  \right]  }_{ 0 }^{ 4 }\quad $$
    $$=\cfrac { 4 }{ 3 } \left[ { 4 }^{ 3/2 }-0 \right] -\cfrac { 1 }{ 12 } \left[ { 4 }^{ 3 }-0 \right] $$
    $$=\cfrac { 32 }{ 3 } -\cfrac { 16 }{ 3 } =\cfrac { 16 }{ 3 } $$sq. units

  • Question 5
    1 / -0
    The area of the region bounded by the y-axis, $$y = \cos x$$ and $$y = \sin x, 0\leq x \leq \dfrac {\pi}{2}$$ is
    Solution
    Refer image 1.
    Finding point of Intersection $$B$$
    Solving
    $$y=\cos x$$ and $$y=\sin x$$
    $$\cos x=\sin x$$
    Refer image 2.
    At $$x=\dfrac{\pi}{4}$$, both are equal
    Also,
    $$y=\cos x=\cos \dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}$$
    So, $$B=\left(\dfrac{\pi}{4},\dfrac{1}{\sqrt{2}}\right)$$
    Refer image 3.
    Refer image 4.
    Area $$ABCO$$
    Area ABCO $$\displaystyle \int^{\pi/4}_0 ydx$$
    Here, $$y=\cos x$$
    Thus,
    Area ABCO= $$\displaystyle \int^{\pi/4}_0 \cos x dx$$
                           $$=[\sin x]^{\pi/4}_0$$
                           $$=[\sin\dfrac{\pi}{4}-\sin 0]$$
                           $$=\dfrac{1}{\sqrt{2}}-0$$ 
                          $$=\dfrac{1}{\sqrt{2}}$$

    Refer image 5.
    Area $$BCO$$
    Area BCO $$\displaystyle \int^{\pi/4}_0 ydx$$
    Here, $$y=\sin x$$
    Thus,
    Area BCO = $$\displaystyle \int^{\pi/4}_0 \sin x dx$$
                           $$=-[\cos x]^{\pi/4}_0$$
                           $$=-[\cos\dfrac{\pi}{4}-\cos(0)]$$
                           $$=-[\dfrac{1}{\sqrt{2}}-1]$$ 
                          $$=1-\dfrac{1}{\sqrt{2}}$$
    Therefore
    Area Required = Area ABCD - Area BCO
                          $$=\dfrac{1}{\sqrt{2}}-[1-\dfrac{1}{\sqrt{2}}]$$
                         $$=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-1$$
                          $$=\dfrac{2}{\sqrt{2}}-1$$
                         $$=\sqrt{2}-1$$
    $$\therefore$$ Option $$B$$ is correct.

  • Question 6
    1 / -0
    Area bounded between the curve $$x^2=y$$ and the line $$y=4x$$ is
    Solution
    Given curves are $$x^2=y$$ and $$y=4x$$
    Intersection points are $$(0, 0)$$ and $$(4, 16)$$
    $$\therefore$$ Required area $$=\int^4_0(4x-x^2)dx$$
    $$=\left[\displaystyle\frac{4x^2}{2}-\frac{x^3}{3}\right]^4_0$$
    $$=\displaystyle\left[32-\frac{64}{3}\right]$$
    $$=\displaystyle\frac{32}{3}$$sq unit
  • Question 7
    1 / -0
    The area enclosed between the curve $$\displaystyle y=1+{ x }^{ 2 }$$, the y-axis and the straight line $$\displaystyle y=5$$ is given by
    Solution
    Given curve is $$\displaystyle y=1+{ x }^{ 2 }$$ and line $$\displaystyle y=5$$
    $$\displaystyle \therefore $$ Required area $$\displaystyle =\int _{ 1 }^{ 5 }{ x } dy=\int _{ 1 }^{ 5 }{ \sqrt { y-1 } dx } $$
    $$\displaystyle ={ \left[ \frac { { \left( y-1 \right)  }^{ { 3 }/{ 2 } } }{ { 3 }/{ 2 } }  \right]  }_{ 1 }^{ 5 }=\frac { 2 }{ 3 } \left[ { \left( 4 \right)  }^{ { 3 }/{ 2 } }-0 \right] $$
    $$\displaystyle =\frac { 16 }{ 3 } $$ sq unit.
  • Question 8
    1 / -0
    The area bounded by the parabolas $$y=4x^2,\,y=\dfrac{x^2}{9}$$ and line $$y=2$$ is
    Solution
    $$y=4x^2\;\;\;\dots(i)$$
    $$y=\dfrac{x^2}{4}\;\;\;\dots(ii)$$
    $$\therefore\;A=\int_0^2\begin{bmatrix}\dfrac{\sqrt{y}}{2}-3\sqrt{y}\end{bmatrix}dy$$
    $$=\begin{pmatrix}\dfrac{1}{2}-3\end{pmatrix}\int_0^2\sqrt{y}dy$$
    $$=\begin{pmatrix}\dfrac{-5}{2}\end{pmatrix}.\dfrac{2}{3}\begin{bmatrix}y^{{3}/{2}}\end{bmatrix}_0^2$$
    $$=-\dfrac{5}{3}(2\sqrt{2}-0)=\begin{vmatrix}\dfrac{-10\sqrt{2}}{3}\end{vmatrix}$$
    $$=\dfrac{10\sqrt{2}}{3}\Rightarrow\text{Area of bounded Area}=2A=\dfrac{20\sqrt{20}}{3}$$
  • Question 9
    1 / -0
    The area bounded by the curve $$y=x|x|$$, $$x$$-axis and the ordinates $$x=-1$$ and $$x=1$$ is given by
    Solution
    $$y=x^2$$ if $$x > 0$$ and $$y=-x^2$$ if $$x < 0$$
    Required area $$=\displaystyle \int_{-1}^{1}y dx$$

    $$=\displaystyle \int_{-1}^{1}x|x|dx$$

    $$=\displaystyle \int_{-1}^{0} x^2 dx+\int_{0}^{1}x^2dx$$

    $$=\left [\dfrac {x^3}{3}\right ]_{-1}^{0}+\left [\dfrac {x^3}{3}\right ]_{0}^{1}$$

    $$=-\left (-\dfrac {1}{3}\right )+\dfrac {1}{3}$$

    $$=\dfrac {2}{3}$$ sq. units

    Thus, the correct answer is C.

  • Question 10
    1 / -0
    Area bounded by the curves $$y=x^3$$, the $$x$$-axis and the ordinates $$x=-2$$ and $$x=1$$ is
    Solution
    Required area $$=-\displaystyle \int_{-2}^{0}x^3 dx+\int_{0}^{1}x^3 dx$$
    $$=-\left [\dfrac {x^4}{4}\right ]_{-2}^{0}+\left [\dfrac {x^4}{4}\right ]_{0}^{1}$$
    $$=-\left [0-\dfrac {(-2)^4}{4}\right ]+\dfrac{1}{4}$$
    $$=\left (\dfrac {1}{4}+4\right )=\dfrac {17}{4}$$sq. units
    Thus, the correct answer is D.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now