Self Studies

Application of Integrals Test - 23

Result Self Studies

Application of Integrals Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the circle $$x^2+y^2=16$$ exterior to the parabola $$y^2=6x$$ is
    Solution
    The given equations are
    $$x^2+y^2=16........ (1)$$
    $$y^2=6x ....... (2)$$

    Area bounded by the circle and parabola
    $$=2[Area (OADO)+Area (ADBA)]$$

    $$=2[\displaystyle \int_{0}^{2}\sqrt {16x}dx+\int_{2}^{4}\sqrt {16-x^2}dx]$$

    $$=2\left [\sqrt 6\left \{\dfrac {x^{\dfrac {3}{2}}}{\dfrac {3}{2}}\right \}_{0}^{2}\right ]+2\left [\dfrac {x}{2}\sqrt {16-x^2}+\dfrac {16}{2}\sin^{-1}\dfrac {x}{4}\right ]_{2}^{4}$$

    $$=2\sqrt 6\times \dfrac {2}{3}\left [x^{\dfrac {3}{2}}\right ]_{0}^{2}+2\left [8\cdot \dfrac {\pi}{2}-\sqrt {16-4}-8 \sin^{-1}\left (\dfrac {1}{2}\right )\right ]$$

    $$=\dfrac {4\sqrt 6}{3}(2\sqrt 2)+2\left [4\pi-\sqrt {12}-8\dfrac {\pi}{6}\right ]$$

    $$=\dfrac {16\sqrt 3}{3}+8\pi - 4\sqrt 3-\dfrac {8}{3}\pi$$

    $$=\dfrac {4}{3}[4\sqrt 3+6\pi - 2\sqrt 3-2\pi ]$$$$=\dfrac {4}{3}[\sqrt 3+4\pi]$$

    $$=\dfrac {4}{3}[4\pi +\sqrt 3]$$ sq. units

    Area of circle $$=\pi(r)^2$$
    $$=\pi(4)^2$$
    $$=16 \pi$$ sq. units

    $$\therefore$$ Required area $$=16\pi -\dfrac {4}{3}[4\pi +\sqrt 3]$$
    $$=\dfrac {4}{3}[4\times 3\pi -4\pi -\sqrt 3]$$

    $$=\dfrac {4}{3}(8\pi -\sqrt 3)$$ sq. units

    Thus, the correct answer is C.

  • Question 2
    1 / -0
    The area of the region bounded by the curves $$y={ x }^{ 2 }$$ and $$x={ y }^{ 2 }$$ is
    Solution
    Given curves are $$y={x}^{2}$$ and $$x={y}^{2}$$, which is the form of parabola.
    The point of intersection, $$x={ \left( { x }^{ 2 } \right)  }^{ 2 }$$
    $$\Rightarrow x={ x }^{ 4 }\Rightarrow x\left( 1-{ x }^{ 3 } \right) =0$$
    $$\Rightarrow x=0$$ and $$1={ x }^{ 3 }$$
    $$\Rightarrow x=0$$ and $$x=1$$ 
    When $$x=0$$, then $$y=0$$
    When $$x=1$$, then $$y={ 1 }^{ 2 }=1$$
    $$\therefore $$ The point of intersection is $$\left( 0,0 \right) $$ and $$\left( 1,1 \right) $$.
    $$\therefore $$ Area of shaded region
    $$=\displaystyle\int _{ 0 }^{ 1 }{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) dx } $$
    $$=\displaystyle\int _{ 0 }^{ 1 }{ \left[ \sqrt { x } -{ x }^{ 2 } \right] dx } ={ \left[ \dfrac { { x }^{ { 3 }/{ 2 } } }{ { 3 }/{ 2 } } -\dfrac { { x }^{ 3 } }{ 3 }  \right]  }_{ 0 }^{ 1 }$$
    $$=\dfrac { 2 }{ 3 } { \left( 1 \right)  }^{ { 3 }/{ 2 } }-\dfrac { { \left( 1 \right)  }^{ 3 } }{ 3 } -0-0$$
    $$=\dfrac { 2 }{ 3 } -\dfrac { 1 }{ 3 } =\dfrac { 1 }{ 3 } $$sq units

  • Question 3
    1 / -0
    Area of the region bounded by $$y = |x|$$ and $$y = |x| + 2$$, is
    Solution
    The graph is shown in image 

    In $$1^{st}$$ quadrant , intersection point of $$y=x$$ and $$y=-x+2$$ is $$(1,1)$$

    similarly in $$2^{nd}$$ quadrant , intersection point of $$Y=X$$ and $$y=-x+2$$ is $$(-1,1)$$

    now $$A=2\Bigg[\int_{0}^{1}\bigg[-x+2\bigg]-\int_{0}^{1}\bigg[x\bigg]\Bigg]$$
    $$A=2\times{1}$$ 
    $$A=2 sq.unit$$

  • Question 4
    1 / -0
    The area included between the parabolas $$x^2=4y$$ and $$y^2=4x$$ is (in square units)
    Solution
    One intersection point of the two parabolas is the origin, while the other can be found out by substituting either equation into the other.
    Thus we have $$\left (\dfrac{x^2}{4}\right)^2 = 4x$$
    which yields $$x^4 = 64x$$ i.e. $$x = 0,4$$
    Area included between the two curves can be found out by $$\displaystyle \int_0^4 \left (2\sqrt{x} - \dfrac{x^2}{4}\right) dx$$
    $$=\left  [ \dfrac{4x^{1.5}}{3} - \dfrac{x^3}{12}\right] _0^4$$
    $$= \dfrac{32}{3} - \dfrac{64}{12}$$
    $$= \dfrac{32}{6}$$

  • Question 5
    1 / -0
    The area enclosed between the curves $$\displaystyle y={ x }^{ 3 }$$ and $$\displaystyle y=\sqrt { x } $$ is, (in square units):
    Solution
    Required area $$\displaystyle \int_0^1 (\sqrt x -x^3)dx=\left( \dfrac{2x^{3/2}}{3}-\dfrac{x^4}{4}\right)_0^1=\dfrac{2}{3}-\dfrac{1}{4}-0=\dfrac{5}{12}$$

  • Question 6
    1 / -0
    The area included between the parabolas $$\displaystyle { y }^{ 2 }=4x$$ and $$\displaystyle { x }^{ 2 }=4y$$ is
    Solution
    We know that, the area of region bounded by the parabolas $$\displaystyle { y }^{ 2 }=4ax$$ and $$\displaystyle { x }^{ 2 }=4by$$ is $$\displaystyle \frac { 16 }{ 3 } ab$$ sq.unit.
    Therefore, $$\displaystyle { y }^{ 2 }=4ax$$ and $$\displaystyle { x }^{ 2 }=4y$$ is $$\displaystyle \frac { 16 }{ 3 } $$ sq.unit.
    $$\displaystyle \left( \because a=1,b=1 \right) $$
  • Question 7
    1 / -0
    The area of the region bounded by the graph of $$y = \sin x$$ and $$y = \cos x$$ between $$x = 0$$ and $$x = \dfrac {\pi}{4}$$ is
    Solution
    Area bounded by the curves $$y=\sin x$$ and $$y=\cos x$$ is given by
    $$A=\displaystyle \int  _{0} ^{\tfrac{\pi}{4}} (\cos x-\sin x) dx$$
    $$=[\sin x+\cos x]_{0} ^{\tfrac{\pi}{4}}$$
    $$=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-1$$
    $$=\dfrac{2}{\sqrt{2}}-1$$
    $$=\sqrt{2}-1$$ sq. units.

  • Question 8
    1 / -0
    Area of the region satisfying $$x \le 2, y \le |x|,x-axis$$ and $$x\ge 0$$ is:
    Solution
    Required area = Area of shaded region OAB
    $$=^2_oydx=^2_0xdx=\frac{x^2}{2}^2_0$$
    $$=$$2 sq unit
    Alternate Solution
    Required area = Area of $$\Delta$$ OAB
    $$=\frac{1}{2}\times 2\times 2$$
    $$=$$ 2 sq unit

  • Question 9
    1 / -0
    The area of the region bounded by the curves $$y = x^{3}, y = \dfrac {1}{x}, x = 2$$ is
    Solution
    First of all we draw the graph,
    $$y = x^{3}, y = \dfrac {1}{x}, x = 2$$
    $$\therefore$$ Required area i.e., $$(OMPNO)$$
    $$=\displaystyle  \int_{0}^{1} x^{3} dx + \int_{1}^{2} \dfrac {1}{x}dx$$

    $$=\left [\dfrac {x^{4}}{4}\right ]_{0}^{1} + [\log_{e}x]_{1}^{2} = \dfrac {1}{4} + \log_{e} 2$$

  • Question 10
    1 / -0
    The area (in square units) bounded by the curves $$y^{2} = 4x$$ and $$x^{2} = 4y$$ is
    Solution
    $$y^{2} = 4x$$
    $$x^{2} = 4y$$
    solving  two equations
    $$\dfrac {y^{2}}{4} = x$$
    $$\left (\dfrac {y^{2}}{4}\right )^{2} = 4y$$
    $$\dfrac {y^{4}}{4\times 4} = 4y$$
    $$y^{4} = 64y$$
    $$y(y^{2} - 64) = 0$$
    $$y = 0, y^{3} = 64$$
    $$y = 4$$
    $$\int_{0}^{4} \left (\dfrac {y^{2}}{4} - 2\sqrt {y}\right )dy$$
    $$= \left [\dfrac {y^{3}}{4\times 3} - \dfrac {y^{\dfrac {B}{2}}}{3}\right ]_{0}^{4}$$
    $$= \left |\dfrac {-16}{3}\right | = \dfrac {16}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now