Self Studies

Application of Integrals Test - 24

Result Self Studies

Application of Integrals Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The line $$2y=3x+12$$ cuts the parabola $$4y=3x^2$$. What is the area enclosed by the parabola and the line?
    Solution
    The graph is shown in the image. 
    The intersection point of $$2y=3x+12$$ and $$4y=3x^2$$ 
    $$2\Big(\dfrac{3x^2}{4}\Big)=3x+12$$
    $$x^2-2x-8=0$$
    $$x=-2,4$$
    Hence, intersection point are $$(-2,3)$$ and $$(4,12)$$
    Now, $$A=\int_{-2}^{4}\Bigg[\dfrac{3x+12}{2}\Bigg]-\int_{-2}^{4}\Bigg[\dfrac{3x^2}{4}\Bigg]$$
    $$A=\Bigg[\dfrac{3x^2}{4}+6x \Bigg]\Bigg|_{-2}^4 -\Bigg[\dfrac{x^3}{4}\Bigg]\Bigg|_{-2}^4 $$ 
    $$A=9+36-18 $$
    $$A=27$$ $$sq.unit$$

  • Question 2
    1 / -0
    The area in the first quadrant between $$x^2 + y^2 = \pi^2$$ and $$y = sin  x$$ is
    Solution
    $$x^2 + y^2 = \pi^2$$ is a circle of radius $$\pi$$ and centre at origin.
    Required area
    = Area of circle (1st quadrant) $$- \int_0^{\pi} sin   x dx$$
    $$= \dfrac{\pi. \pi^2}{4} - [-cos  x]_{0}^{\pi} = \dfrac{\pi^3}{4} + (cos \pi - cos 0)$$
    $$= \dfrac{\pi^3}{4} + (-1 - 1) = \dfrac{\pi^3}{4} - 2 = \dfrac{\pi^3 - 8}{4}$$
    Hence, option A is correct.

  • Question 3
    1 / -0
    Consider the curves $$y = \sin x$$ and $$y = \cos x$$.
    What is the area of the region bounded by the above two curves and the lines $$x = 0$$ and $$x = \dfrac {\pi}{4}$$?
    Solution
    The area enclosed by $$y=sinx, y=cosx,x=0,x=\frac { \pi  }{ 4 } $$  is given by 
    $$\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ (\cos x-\sin x)dx } $$
    $$=|\sin x+\cos x|_{0}^{\frac{\pi}{4}}$$
    $$=\dfrac { 1 }{ \sqrt { 2 }  } +\dfrac { 1 }{ \sqrt { 2 }  } -0-1$$
    $$=\sqrt { 2 } -1$$
  • Question 4
    1 / -0
    The area bounded by the curves $$y = \cos x$$ and $$y = \sin x$$ between the ordinates $$x = 0$$ and $$x = \dfrac {3\pi}{2}$$ is
    Solution
    Required area
    $$= \int_{0}^{\pi /4} (\cos x - \sin x) dx + \int_{\pi/4}^{5\pi/4}(\sin x - \cos x) dx + \int_{5\pi/4}^{3\pi/2} (\cos x - \sin x)dx$$
    $$= [\sin x + \cos x]_{0}^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{5\pi/4} + [\sin x + \cos x]_{5\pi/4}^{3\pi/2}$$
    $$=\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-1 \right)-\left( -\dfrac{1}{\sqrt{2}} - \dfrac{1}{\sqrt{2}} - \dfrac{1}{\sqrt{2}} - \dfrac{1}{\sqrt{2}} \right) + \left( -1+0+\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{2}}\right)$$
    $$=\dfrac{8}{\sqrt{2}} - 2$$
    $$= (4\sqrt {2} - 2)sq\ units$$
    Hence, option A is correct.

  • Question 5
    1 / -0
    Consider the curves $$y = \sin x$$ and $$y = \cos x$$.
    What is the area of the region bounded by the above two curves and the lines $$x = \dfrac {\pi}{4}$$ and $$x = \dfrac {\pi}{2}$$?
    Solution
    The area enclosed by $$y=\sin x, y=\cos x, x=\dfrac { \pi  }{ 2}, x=\dfrac { \pi  }{ 4 }$$  is given by 
    $$\displaystyle \int _{ \frac { \pi  }{ 4 }  }^{ \frac { \pi  }{ 2}  }{ (-\cos x+\sin x)dx }$$ 
    $$=|-\sin x-\cos x|_{ \frac { \pi  }{ 4 }  }^{ \frac { \pi  }{ 2 }  }$$
    $$=-1+\frac { 1 }{ \sqrt { 2 }  } +\frac { 1 }{ \sqrt { 2 }  }$$ 
    $$=\sqrt { 2 } -1$$
  • Question 6
    1 / -0
    The area of the region bounded by the lines $$y = 2x + 1, y = 3x + 1$$ and $$x = 4$$ is
    Solution
    $$A$$(Shaded region) $$= A(\triangle ABD) - A(\triangle ABC) = \dfrac {1}{2} [4\times 12 - 4 \times 8] = \dfrac {1}{2} (48 - 32) = 8\ sq.units$$.
    OR
    $$A (\triangle ACD) = \dfrac {1}{2}\begin{vmatrix} 0& 1 & 1\\ 4 & 9 & 1\\ 4 & 13 & 1\end{vmatrix}$$
    $$= \dfrac {1}{2}\times 16 = 8$$

  • Question 7
    1 / -0
    The area bounded by the curves $$y=\cos x$$ and $$y=\sin x$$ between the ordinates $$x=0$$ and $$x=\displaystyle\frac{3\pi}{2}$$ is?
    Solution
    We have,
    $$y=\cos x$$ and $$y=\sin x$$ between $$x=0$$ and $$x=\displaystyle\frac{3\pi}{2}$$

    Required area A is given by
    $$A=\displaystyle\int^{3\pi /2}_0|\cos x-\sin x|dx$$

    $$\Rightarrow A=\displaystyle\int^{\pi /4}_0|\cos x-\sin x|dx+\int^{5\pi/4}_{\pi /4}|\cos x -\sin x|dx+\displaystyle \int^{3\pi /2}_{5\pi/4}|\cos x - \sin x|dx$$

    $$\Rightarrow \displaystyle A=\int^{\pi /4}_0(\cos x-\sin x)dx+\displaystyle \int^{5\pi/4}_{\pi /4}(\sin x -\cos x)dx+ \displaystyle \int^{3\pi /2}_{5\pi /4}(\cos x -\sin x)dx$$

    $$\Rightarrow A=\displaystyle [\sin x+\cos x]^{\pi /4}_0+[-\cos x -\sin x]^{5\pi /4}_{\pi/4}+[\sin x+ \cos x]^{3\pi /2}_{\pi /4}$$

    $$\Rightarrow A=(\sqrt{2}-1)+(\sqrt{2}+\sqrt{2})+(-1+\sqrt{2})$$

    $$\Rightarrow A=4\sqrt{2}-2$$.

  • Question 8
    1 / -0
    The line $$x=\dfrac{\pi}{4}$$ divide the area of the region bounded by $$y=\sin x, y = \cos x$$ and X-axis $$\left(0 \le x \le \frac{\pi}{2}\right)$$ into two regions of areas $$A_1$$ and $$A_2$$. Then, $$A_1:A_2$$ equals
    Solution
    Area $$A_1=\displaystyle \int_0^{\frac{\pi}{4}}\sin x\,dx$$
    $$=-[\cos x]_0^{\frac{\pi}{4}}$$
    $$=1-\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}-1}{\sqrt{2}}$$

    and Area $$A_2=\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cos x\,dx$$
    $$=\displaystyle [\sin x]^{\frac{\pi}{2}}_{\frac{\pi}{4}}=\left[1-\dfrac{1}{\sqrt{2}}\right]=\dfrac{\sqrt{2}-1}{\sqrt{2}}$$ 
    $$\therefore A_1:A_2 = \dfrac{\sqrt{2}-1}{\sqrt{2}}: \dfrac{\sqrt{2}-1}{\sqrt{2}}=1:1$$

  • Question 9
    1 / -0
    The area bounded by the parabola $${ y }^{ 2 }=4a(x+a)$$ and $${ y }^{ 2 }=-4a(x-a)$$ is
    Solution
    Required area $$=4\int _{ 0 }^{ 4 }{ \sqrt { 4a(a-x) }  } dx$$
    $$=4\times2\sqrt { a } { \left[ \cfrac { -2{ (a-x) }^{ 3/2 } }{ 3 }  \right]  }_{ 0 }^{ 4 }=\cfrac { 16 }{ 3 } { a }^{ 2 }$$

  • Question 10
    1 / -0
    Consider an ellipse $$\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1$$ What is the area included between the ellipse and the greatest rectangle inscribed in the ellipse?
    Solution
    As the rectangle lies inside a standard ellipse, the vertices of the rectangle can be assumed to be $$(h,k),(h,-k),(-h,k)$$ and $$(-h,-k)$$ without any loss of generality.
    $$\therefore \dfrac{h^2}{a^2}+\dfrac{k^2}{b^2}=1\implies k=b\sqrt{1-\dfrac{h^2}{a^2}}$$
    Clearly, the sides of the rectangle based on the coordinates chosen can be determined as $$2h$$ and $$2k$$.
    $$\therefore$$ area of rectangle $$=A(h)=2h\times 2k=4h b\sqrt{1-\dfrac{h^2}{a^2}}\implies 4b\sqrt{h^2-\dfrac{h^4}{a^2}}$$
    Now, let $$P(h)=h^2-\dfrac{h^4}{a^2}$$. Thus, the maximization of $$A(h)$$ boils down just to the maximization of $$P(h)$$.
    Differentiating $$P(h)$$ wrt $$h$$, we have
    $$2h-\dfrac{4h^3}{a^2}=0\implies h=\dfrac{2h^3}{a^2}\implies 2h^2=a^2\implies h=\dfrac{a}{\sqrt{2}}\implies k=\dfrac{b}{\sqrt{2}}$$
    Hence, $$A_{max}=2ab$$
    $$\therefore$$ area included between this ellipse and rectangle $$=\pi ab-2ab=ab(\pi-2)$$.
    this is the required answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now