Self Studies

Application of Integrals Test - 25

Result Self Studies

Application of Integrals Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the curve $$y = x^{2}$$ and $$y = 4x - x^{2}$$ is
    Solution
    Here area,
    $$\int _{ 0 }^{ 2 }{ (4x-x^{ 2 }-x^{ 2 })dx }$$ 

    $$ =\int _{ 0 }^{ 2 }{ (4x-2x^{ 2 })dx }$$ 

    $$ ={ \left( 2x^{ 2 }-\dfrac { 2 }{ 3 } x^{ 3 } \right)  }_{ 0 }^{ 2 }$$

    $$ =\dfrac { 8 }{ 3 } $$ 

  • Question 2
    1 / -0
    The area of the figure bounded by the parabolas $$x = -2y^{2}$$ and $$x = 1 - 3y^{2}$$ is
    Solution
    Given curves are $$x=-2y^{2}$$ and $$x=1-3y^{2}$$
    $$-2y^{2}=1-3y^{2}$$ 
    $$\implies y^{2}=1 \implies y=\pm 1$$
    $$\therefore$$ Curves intersect at $$(-2, \pm 1)$$
    Area $$ =\int_{-1}^{1} (1-3y^{2}-(-2y^{2}))\ dy$$ 

             $$ =\int_{-1}^{1} (1-y^{2})\ dy$$

             $$ =\int_{-1}^{0} (1-y^{2})\ dy +\int_{0}^{1} (1-y^{2})\ dy$$
    Substituting $$y=-y$$ in first integral we get, 
    Area $$ =\int_{0}^{1} (1-y^{2})\ dy +\int_{0}^{1} (1-y^{2})\ dy$$ 

             $$= 2\int_{0}^{1} (1 - y^{2}) dy$$ 
             
             $$=2\left|y-\dfrac{y^{3}}{3}\right|_{0}^{1}$$

             $$= 2\left (1 - \dfrac {1}{3}\right ) = \dfrac {4}{3}$$
    Hence, area bounded by the given curves is $$\dfrac{4}{3}$$ square units.

  • Question 3
    1 / -0
    The area formed by triangular shaped region bounded by the curves $$y=\sin { x } ,y=\cos { x } $$ and $$x=0$$ is
    Solution
    $$\left( \because y=\sin { x } \text{ and } y=\cos { x } \text{ meet at } x={ \pi  }/{ 4 } \right) $$
    Then, the upper limit will be $$\dfrac{\pi}{4}$$.
    Required Area $$=\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ \left( \cos { x } -\sin { x }  \right) dx }$$
    $$=\left[\sin x+\cos x\right]_{0}^{\pi/4}$$
    $$ =\left( \sqrt { 2 } -1 \right) $$ sq unit

  • Question 4
    1 / -0
    The area of the figure bounded by the curves $$y = |x - 1|$$ and $$y = 3 - |x|$$ is
    Solution
    Area of the curve figure bounded by curves $$y=\left| x-1 \right| $$ and $$y=3-\left| x \right| $$
    $$y=x-1\longrightarrow (1)\\ y=1-x\longrightarrow (2)\\ y=3-x\longrightarrow (3)\\ y=3+x\longrightarrow (4)$$
    For : (B)
    $$y=1-x\\ y=3-x\\ x=-1\\ y=2$$
    Area required = Area of rectangle ABCD
    $$=(AB)(AD)$$
    $$=\sqrt { 8 } \times \sqrt { 2 } \\ =4\quad sq.\quad units$$

  • Question 5
    1 / -0
    The area of the region of the plane bounded by $$max(|x|, |y|) \leq 1$$ and $$xy\leq \dfrac {1}{2}$$ is
  • Question 6
    1 / -0
    The area bounded between the parabolas $$x^2 = \dfrac{y}{4} $$ and $$x^2 = 9y$$, and the straight line $$y = 2$$ is:
    Solution

    The given two parabolas are $$x^2=\dfrac{y}{4}$$ and $$x^2=9y$$
    We have to find the area bounded between the parabolas and the straight line $$y=2$$
    The required area is equal to the shaded region in the drawn figure.
    The area of the shaded region is twice the area shaded in first quadrant.
    $$\Rightarrow$$  Required area $$=2\displaystyle\int_0^2\left(3\sqrt{y}-\dfrac{\sqrt{y}}{2}\right)dy$$
                                     
                                   $$=2\displaystyle\int_0^2\left(\dfrac{6\sqrt{y}-\sqrt{y}}{2}\right)dy$$

                                   $$=2\displaystyle\int_0^2\left(\dfrac{5\sqrt{y}}{2}\right)dy$$

                                   $$=5\left(\dfrac{y^{\dfrac{3}{2}}}{3/2}\right)^{2}_{0}$$

                                   $$=\dfrac{10}{3}\left(2^{\dfrac{3}{2}}-0\right)$$

                                   $$=\dfrac{20\sqrt{2}}{3}$$

  • Question 7
    1 / -0
    The parabola $${ y }^{ 2 }=4x$$ and $${ x }^{ 2 }=4y$$ divide the square region bounded by the lines $$x=4, y=4$$ and the coordinate axes. If $${ S }_{ 1 }, { S }_{ 2 }$$ and $${ S }_{ 3 }$$ are respectively the areas of these parts numbered from top-to-bottom, then $${ S }_{ 1 } : { S }_{ 2 } : { S }_{ 3 }$$ is
    Solution
    $${ S }_{ 1 }={ S }_{ 3 }=\displaystyle\int _{ 0 }^{ 4 }{ \dfrac { { x }^{ 2 } }{ 4 } dx } $$
    $$={ \left[ \dfrac { { x }^{ 3 } }{ 12 }  \right]  }_{ 0 }^{ 4 }=\left[ \dfrac { 64 }{ 12 } -0 \right] =\dfrac { 16 }{ 3 } $$
    Now, $${ S }_{ 2 }=\displaystyle\int _{ 0 }^{ 4 }{ \left( \sqrt { 4x } -\dfrac { { x }^{ 2 } }{ 4 }  \right) dx } $$
                $$={ \left[ 2{ x }^{ { 3 }/{ 2 } }\cdot \dfrac { 2 }{ 3 } -\dfrac { { x }^{ 3 } }{ 12 }  \right]  }_{ 0 }^{ 4 }=\dfrac { 16 }{ 3 } $$
    $$\therefore { S }_{ 1 } : { S }_{ 2 } : { S }_{ 3 }=\dfrac { 16 }{ 3 } : \dfrac { 16 }{ 3 } : \dfrac { 16 }{ 3 } = 1 : 1 : 1$$

  • Question 8
    1 / -0
    The area enclosed between the parabolas $$y^{2} = 16x$$ and $$x^{2} = 16y$$ is
    Solution
    Both parabolas cut each other at $$(0,0)$$ and $$(16,16)$$
    Area enclosed by these parabolas
     $$=\displaystyle\int_0^{16}4\sqrt x dx-\int_0^{16} \dfrac{x^2}{16}dx$$

    $$=\Bigl[\dfrac{2\times 4\times x^{3/2}}{3}\Bigr]_0^{16}-\Big[\dfrac{x^3}{16\times 3}\Bigr]_0^{16}$$

    $$=\dfrac{2\times 4^4}{3}-\dfrac{4^4}{3}=\dfrac{256}{3}$$ sq. units
  • Question 9
    1 / -0
    The area of the region described by $$ \begin{Bmatrix} (x,,y)/x^2 +y^2 \leq 1 and\   y^2\leq1-x\end{Bmatrix}$$ is
  • Question 10
    1 / -0
    Area of the region bounded by the curves $$y={ 2 }^{ x },y=2x-{ x }^{ 2 },x=0$$ and $$x=2$$ is given by
    Solution
    Let the required area be $$A$$ sq. units. Then,
    $$A=\int _{ 0 }^{ 2 }{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) dx } $$
    $$=\int _{ 0 }^{ 2 }{ \left( { 2 }^{ x }-(2x-{ x }^{ 2 }) \right) dx } $$
    $$={ \left[ \cfrac { { 2 }^{ x } }{ \log { 2 }  } -{ x }^{ 2 }+\cfrac { { x }^{ 3 } }{ 3 }  \right]  }_{ 0 }^{ 2 }$$
    $$=\cfrac { 4 }{ \log { 2 }  } -4+\cfrac { 8 }{ 3 } \cfrac { 1 }{ \log { 2 }  } $$
    $$=\cfrac { 3 }{ \log { 2 }  } -\cfrac { 4 }{ 3 } sq.units$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now