Self Studies

Application of Integrals Test - 26

Result Self Studies

Application of Integrals Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area enclosed by the curves $$|y + x|\leq 1, |y - x|\leq 1$$ and $$2x^{2} + 2y^{2} = 1$$ is
    Solution
    The curves $$y + x\leq 1$$$ and $$|y - x|\leq 1$$ form a square $$ABCD$$ and $$2x^{2} + 2y^{2} = 1$$ is a circle of radius $$\dfrac {1}{\sqrt {2}}$$ and centre $$(0, 0)$$.
    Therefore, required area $$=$$ Area of square $$-$$ Area of circle
    $$= \left (2 -\dfrac {\pi}{2}\right ) $$ sq. units

  • Question 2
    1 / -0
    Area bounded by $$f(x)=max.\left( \sin { x } ,\cos { x }  \right) $$ $$\quad \forall 0\le x\le \cfrac { \pi  }{ 2 } $$ and the co-ordinate axis is equal to
    Solution
    $$f(x)=max(\sin x,\cos x)$$
    $$0<x<\pi/4, \cos x>\sin x$$
    $$\pi/4<x<\pi/2, \cos x>\sin x$$
    $$f(x)=\cos x, 0<x<\pi/4\\ =\sin x,\pi/4<x<\pi /2$$
    Area$$=|\int _{ 0 }^{ \pi /4 }{ \cos { x }  } dx|+|\int _{ \pi /4 }^{ \pi /2 }{ \sin { x }  } dx|$$
    $$|\sin \pi/4-\sin 0|+|\cos\pi/2+\cos \pi/4|$$
    $$=\sqrt 2$$ units$$^2$$

  • Question 3
    1 / -0
    What is the area of the rectangle , whose length is $$5\sqrt 3\ cm$$ and breadth is $$5\ cm$$.
    Solution
    Area of rectangle having length $$l$$ and breadth $$b=l\times b$$
    If $$l=5\sqrt3 cm$$ and $$b=5 cm$$, then Area$$=5\sqrt3\times 5cm^2\\ =25\sqrt3=25\times1.73=43.25cm^2$$
  • Question 4
    1 / -0
    The area bounded by the circles $${ x }^{ 2 }+{ y }^{ 2 }=1, { x }^{ 2 }+{ y }^{ 2 }=4$$ in the first Quadrant is 
    Solution
    $$x^2+y^2=1$$ and $$x^2+y^2=4$$ are concentric circles 
    They form Ring in between them.
    Area is given by $$\pi(4-1)=3\pi$$
    In first Quadrant it is divided by $$4$$ 
    So, Area is given by $$\dfrac{3\pi}{4}$$
  • Question 5
    1 / -0
    Find the area of a shaded portion.

    Solution
    Area of shaded region$$=ar(PQRS)-ar(\triangle ORS)$$
    $$=20\times 18-\cfrac{1}{2}\times20\times 18\\=360-180=180cm^2$$

  • Question 6
    1 / -0
    If the area bounded by the curve $$y=a{ x }^{ 2 }\quad $$ and $$x=a{ y }^{ 2 },\left( a>0 \right) $$ is $$3sq.units$$, then the value of $$a$$ is
    Solution
    The parabolas intersect at $$(0,0)$$ and $$(\dfrac{1}{a},\dfrac{1}{a})$$

    Area bounded $$=\displaystyle \int_{0}^{\frac{1}{a}}(\sqrt{\dfrac{x}{a}}-ax^2)dx$$
    $$=\left [ \dfrac{2}{3}\dfrac{x^{\frac{3}{2}}}{\sqrt{a}}-a\dfrac{x^3}{3} \right ]_{0}^{\frac{1}{a}}$$

    $$=\left [ \dfrac{2}{3}\dfrac{1}{\sqrt{a}(a^{\frac{3}{2}})} - \dfrac{a}{3a^3} \right ]$$

    $$=\left [ \dfrac{2}{3a^2} - \dfrac{1}{3a^2} \right ]$$

    $$ = \dfrac{1}{3a^2}$$

    It is given that area $$= 3$$ sq.units

    Therefore, $$\dfrac{1}{3a^2}=3$$

    $$\implies a = \dfrac{1}{3}$$

    Hence, answer is option (B).

  • Question 7
    1 / -0
    Find the area of the closed figure bounded by the following curves
    $$y =$$ $$\sqrt{x}, y \, = \,  \sqrt{4 - 3x}$$, y = 0.
    Solution
    Given curve, $$y = \sqrt{x} , y = \sqrt{4-3x}, y = 0$$

    $$y > 0, x \ge 0 , y - 3x \ge 0$$  (basic square root conditions)

    $$\Rightarrow x \le 4/3$$ __(1)

    Now, $$y = \sqrt{4 - 3x} \Rightarrow y^2 = 4-3x$$

    $$x = \dfrac{4 - y^2}{3}  = \dfrac{(2-y)(2 + y)}{3}$$

    It represents a parabola cutting y-axis at $$(0,2), (0,-2)$$ & x-axis at $$(4/3, 0)$$

    Ref. image

    Point of intersection 

    $$\sqrt{4 - 3x} = \sqrt{x}$$

    $$\Rightarrow 4-3x = x$$

    $$x = 1 \Rightarrow y = \sqrt{1} = 1$$

    $$(1, 1)$$ is req. point

    Area bounded by curves (shaded)

    $$=  \displaystyle \int_0^1 \sqrt{x} dx + \int_1^{4/3} \sqrt{4 - 3x} dx$$
    $$= \dfrac{2}{3} \left[x^{3/2}\right]_0^1 + \left[\dfrac{2}{3} \times \dfrac{(4 - 3x)}{(-3)}^{3/2} \right]^{4/3}_1$$

    $$= \dfrac{2}{3} (1 - 0) + \left(\dfrac{-2}{9} \right) (0-1)$$

    $$= \dfrac{2}{3} + \dfrac{2}{9} = \dfrac{8}{9}$$

    $$\therefore$$ option A is correct.

  • Question 8
    1 / -0
    The area of a square inscribed in a semicircle is to the area of the square inscribed in the entire circle as:
    Solution

    Let side of square $$=a$$
    & radii of circle $$=r$$
    $$(b=a/2)$$
    $${ r }^{ 2 }=\dfrac { { a }^{ 2 } }{ 4 } +{ a }^{ 2 }=\dfrac { { 5a }^{ 2 } }{ 4 } $$
    Area of square $$={ a }^{ 2 }=\dfrac { { 4r }^{ 2 } }{ 5 } $$
    Semicircle
    $${ a }^{ 2 }={ 2r }^{ 2 }$$
    $$\dfrac { Ar.\quad of\quad sq }{ Ar.\quad of\quad circle } =\dfrac { { a }^{ 2 } }{ { \pi r }^{ 2 } } =\dfrac { { 2a }^{ 2 } }{ { \pi a }^{ 2 } } =\dfrac { 2 }{ \pi  } $$
    Ar of $${ \left( square \right)  }_{ circle }={ a }^{ 2 }={ 2r }^{ 2 }$$
    Ratio $$\rightarrow \dfrac { { 4r }^{ 2 } }{ 5\times { 2 }r^{ 2 } } =\dfrac { 2 }{ 5 } $$

  • Question 9
    1 / -0
    The area enclosed by the curves
    $$f(x) = \vert sin x - cos x \vert + \vert cos x + sin x \vert \  \text {and}  \ g(x) = 2\vert cos x + sin x \vert , 0 \leq x \leq \pi$$
  • Question 10
    1 / -0
    The area of figure bounded by the curve $$y=2x-{x}^{2}$$ and the straight line $$y=-x$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now