The equations of the circles are $$r=a\sqrt{2}$$ ................$$\left(1\right)$$
and $$r=2a\cos{\theta}$$ .................$$\left(2\right)$$
eqn$$\left(1\right)$$ represents a circle with centre at $$\left(0,0\right)$$ and radius $$a\sqrt{2}$$
eqn$$\left(2\right)$$ represents a circle symmetrical about $$OX$$ with centre at $$\left(a,0\right)$$ and radius $$a$$
The circles are shown in fig.At their point of intersection $$P$$,eliminating $$r$$ from $$\left(1\right)$$ and $$\left(2\right)$$,
$$a\sqrt{2}=2a\cos{\theta}$$
$$\Rightarrow \cos{\theta}=\dfrac{1}{\sqrt{2}}$$
or $$\theta=\dfrac{\pi}{4}$$
$$\therefore$$ Required Area$$=2\times$$area$$OAPQ$$ (By symmetry)
$$=2$$(area$$OAP+$$area$$OPQ$$)
$$=2\left[\dfrac{1}{2}\int_{0}^{\frac{\pi}{4}}{{r}^{2}d\theta}+\dfrac{1}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{r}^{2}d\theta\right]$$ for $$\left(1\right)$$ and $$\left(2\right)$$ respectively.
$$=\int_{0}^{\frac{\pi}{4}}{\left(a\sqrt{2}\right)}^{2}d\theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{{\left(2a\cos{\theta}\right)}^{2}}d\theta$$
$$=2{a}^{2}\left|\theta\right|_{0}^{\frac{\pi}{4}}+4{a}^{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\dfrac{1+\cos{\theta}}{2}}d\theta$$
$$=2{a}^{2}\left(\dfrac{\pi}{4}-0\right)+2{a}^{2}\left|\theta+\dfrac{\sin{2\theta}}{2}\right|_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$
$$=\dfrac{\pi{a}^{2}}{2}+2{a}^{2}\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}-\dfrac{1}{2}\right)$$
$${a}^{2}\left(\pi-1\right)$$