Self Studies

Application of Integrals Test - 27

Result Self Studies

Application of Integrals Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int { [g(x)-f(x)]dx=5 } $$, then the area between two curves for 0 < x < 2, is 
    Solution

  • Question 2
    1 / -0
    The area bounded by the curve $$y=x^2$$ and $$y \, = \, \dfrac{2}{1 \, + \, x^2}$$ is $$\lambda\  sq.\ unit$$, then the value of $$[\lambda ]$$ is 
    Solution
    Required area = $$\int_{-1}^{1}\left(\dfrac{2}{1+x^2} \, - \, x^2\right)dx$$
    $$2\int_{0}^{1}\left(\dfrac{2}{1+x^2} \, - \, x^2\right)dx$$
    $$2\left(2tan^{-1}x \, - \, \dfrac{x^3}{3}\right)^1_0 \, = \, 2\left(\dfrac{\pi}{2} \, - \, \dfrac{1}{3}\right) \, = \, \pi \, - \, \dfrac{2}{3}$$
    $$\therefore \left[\pi \, - , \dfrac{2}{3}\right] \,= \, 2$$

  • Question 3
    1 / -0
    Area of region bounded by $$x=0$$,$$y=0$$ $$x=2$$,$$y=2$$,$$y\le {e}^{x}$$&$$y\ge lnx$$ is
    Solution

    $$Area=\int _{ 0 }^{ 2 }{ \left( x-\ln { x }  \right) dx } +\int _{ 0 }^{ 2 }{ \left( x-\ln { y }  \right) dy } \\ Area={ \left[ \cfrac { { x }^{ 2 } }{ 2 } -\left( x\ln { x-x }  \right)  \right]  }_{ 0 }^{ 2 }+{ \left[ \cfrac { { y }^{ 2 } }{ 2 } -\left( y\ln { y-y }  \right)  \right]  }_{ 0 }^{ 2 }\\ Area=4-4\ln { 2 } +2\\ Area=6-4\ln { 2 } $$

  • Question 4
    1 / -0
    The area bounded by the curves $$y=\left| x \right| -1$$ and $$ y=-\left| x \right| +1$$ is
    Solution
    We can see that it is a square of side $$\sqrt{2}$$units 
    Hence
    $$Area=a^{2}$$
    $$Area=(\sqrt{2})^{2} =2$$units

  • Question 5
    1 / -0
    Area common to the curves $${ y }^{ 2 }$$=ax and $${ x }^{ 2 }$$+$${ y }^{ 2 }$$$$= 4ax$$ is equal to
    Solution
    $$x^{2}+y^{2}=4ax$$
    $$\Rightarrow$$   $$(x-2a)^{2}+y^{2}=(2a)^{2}$$
    $$\int_{0}^{2a}{\sqrt{ax}}dx+\int_{3a}^{4a}{\sqrt{(4ax-x^{2})}dx}$$
    $$\Rightarrow$$   $$\left(\dfrac{4\pi}{6}-3^{{3}/{2}}\right)a^{2}+\dfrac{2}{3}\sqrt{a}(3^{{3}/{2}}a^{{3}/{2}})$$
    $$\Rightarrow$$  $$a^{2}\left(\dfrac{4\pi}{6}+2\sqrt{3}-\dfrac{3\sqrt{3}}{6}\right)$$
    Due to symmetry
    $$=\dfrac{a^{2}}{3}[4\pi+9\sqrt{3}]$$

  • Question 6
    1 / -0
    Find the area bounded by the curves $$x = a\cos t, y = b\sin t$$ in the first quadrant 
    Solution
    $$x=a\cos t$$  ,  $$y=b\sin t$$
    $$\rightarrow$$  $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$$
    It's a hyperbola whose area in any quadrant is given by
    $$\dfrac{\pi ab}{4}$$

  • Question 7
    1 / -0
    A point P moves in xy-plane In such a way that [|x|] + [|y|] = 1 were [.] denotes the greatest integer function. Area of the region representing all possible positions of the point 'P' is equal to 
    Solution
    Graph of the given function is in the figure,

    From figure , graph is a square with side=$$2$$ units.

    Therefore , Area=  $$2\times2=4$$  sq. units

  • Question 8
    1 / -0
    The area common to the circles $$r=a\sqrt{2}$$ and $$r=2a\cos{\theta}$$ is:
    Solution
    The equations of the circles are  $$r=a\sqrt{2}$$             ................$$\left(1\right)$$
    and $$r=2a\cos{\theta}$$                                .................$$\left(2\right)$$
    eqn$$\left(1\right)$$ represents a circle with centre at $$\left(0,0\right)$$ and radius $$a\sqrt{2}$$
    eqn$$\left(2\right)$$ represents a circle symmetrical about $$OX$$ with centre at $$\left(a,0\right)$$ and radius $$a$$
    The circles are shown in fig.At their point of intersection $$P$$,eliminating $$r$$ from $$\left(1\right)$$ and $$\left(2\right)$$,
    $$a\sqrt{2}=2a\cos{\theta}$$
    $$\Rightarrow \cos{\theta}=\dfrac{1}{\sqrt{2}}$$
    or $$\theta=\dfrac{\pi}{4}$$
    $$\therefore$$ Required Area$$=2\times$$area$$OAPQ$$             (By symmetry)
                 $$=2$$(area$$OAP+$$area$$OPQ$$)
                $$=2\left[\dfrac{1}{2}\int_{0}^{\frac{\pi}{4}}{{r}^{2}d\theta}+\dfrac{1}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{r}^{2}d\theta\right]$$ for $$\left(1\right)$$ and $$\left(2\right)$$ respectively.
    $$=\int_{0}^{\frac{\pi}{4}}{\left(a\sqrt{2}\right)}^{2}d\theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{{\left(2a\cos{\theta}\right)}^{2}}d\theta$$
    $$=2{a}^{2}\left|\theta\right|_{0}^{\frac{\pi}{4}}+4{a}^{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\dfrac{1+\cos{\theta}}{2}}d\theta$$
    $$=2{a}^{2}\left(\dfrac{\pi}{4}-0\right)+2{a}^{2}\left|\theta+\dfrac{\sin{2\theta}}{2}\right|_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$
    $$=\dfrac{\pi{a}^{2}}{2}+2{a}^{2}\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}-\dfrac{1}{2}\right)$$
    $${a}^{2}\left(\pi-1\right)$$

  • Question 9
    1 / -0
    The area under the curve $$y= 2\sqrt x$$ bounded by the lines $$x=0$$ and $$x= 1$$ is
    Solution
    $$A=(0,0)$$  ,  $$B=(1,2)$$  ,  $$C=(1,0)$$
    $$=2\int_{0}^{1}{\sqrt{x}}dx$$
    $$[\dfrac{2x^{\dfrac{3}{2}}}{\dfrac{3}{2}}]_{0}^{1}$$
    $$=\dfrac{4}{3}$$

  • Question 10
    1 / -0
    The area common to the cardioids $$r=a\left(1+\cos{\theta}\right)$$ and $$r=a\left(1-\cos{\theta}\right)$$ is:
    Solution
    The cardioid $$r=a\left(1+\cos{\theta}\right)$$ is $$ABCO{B}^{\prime}A$$ and the cardioid  $$r=a\left(1-\cos{\theta}\right)$$ is $$O{C}^{\prime}B{A}^{\prime}{B}^{\prime}O$$
    Both the cardioids are symmetrical about the initial line $$OX$$ and intersect at $$B$$ and $${B}^{\prime}$$
    $$\therefore$$ Required Area$$=2$$Area $$O{C}^{\prime}BCO$$
                         $$=2$$[area$$O{C}^{\prime}BO+$$area$$OBCO$$]
                        $$=2\left[\left(\int_{0}^{\frac{\pi}{2}}{\dfrac{1}{2}{r}^{2}}d\theta\right)_{r=a\left(1-\cos{\theta}\right)}+\int_{\frac{\pi}{2}}^{\pi}\left({\left(1+\cos{\theta}\right)}^{2}d\theta\right)_{r=a\left(1+\cos{\theta}\right)}\right]$$
                  $$={a}^{2}\left[\int_{0}^{\frac{\pi}{2}}{\left(1-2\cos{\theta}+{\cos}^{2}\theta\right)d\theta}+\int_{\frac{\pi}{2}}^{\pi}{\left(1+2\cos{\theta}+{\cos}^{2}\theta\right)}d\theta\right]$$
    $$={a}^{2}\left[\int_{0}^{\pi}{\left(1+{\cos}^{2}\theta\right)d\theta}-2\int_{0}^{\frac{\pi}{2}}{\cos{\theta}d\theta}+2\int_{\frac{\pi}{2}}^{\pi}{\cos{\theta}d\theta}\right]$$
    $$={a}^{2}\left[\int_{0}^{\pi}{\left(1+\dfrac{1+\cos{2\theta}}{2}\right)d\theta}-2\left|\sin{\theta}\right|_{0}^{\frac{\pi}{2}}+2\left|\sin{\theta}\right|_{\frac{\pi}{2}}^{\pi}\right]$$
    $$={a}^{2}\left[\left|\dfrac{3}{2}\theta+\dfrac{\sin{2\theta}}{4}\right|_{0}^{\pi}-2\left(1-0\right)+2\left(0-1\right)\right]$$
    $$=\left(\dfrac{3\pi}{2}-4\right){a}^{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now