Self Studies

Application of Integrals Test - 28

Result Self Studies

Application of Integrals Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area bounded by $$y = x^2 $$ and $$ y = \dfrac{2}{1 + x^2}$$ is:
    Solution
    $$y=x^{2}, y=\dfrac{2}{1+x^{2}}$$
    $$x^{2}=\dfrac{1}{1+x^{2}}$$, For intersection Points
    $$(x^{2})^{2}+x^{2}-2=0$$
    $$x^{2}=1$$
    $$\therefore x=\pm 1$$
    Area bounded $$=\displaystyle\int_{-1}^{1}\left(\dfrac{2}{1+x^{2}}-x^{2}\right)dx$$
    $$=2\tan^{-1}(x)-\dfrac{x}{3}\left.\dfrac{}{}\right|_{-1}^{1}$$
    $$=2\left(\dfrac{\pi}{4}+\dfrac{\pi}{4}\right)-\dfrac{2}{3}=\pi-\dfrac{2}{3}$$
  • Question 2
    1 / -0
    The area between the curves $$y= \tan x, y=2 \sin x $$ and $$x$$-axis in $$-\dfrac{\pi}{3} \leq x \leq \dfrac{\pi}{3}$$ is
    Solution
    Due to symmetry
    $$2\int_{0}^{\dfrac{\pi}{3}}{2\sin x-\tan x}dx$$
    $$=2[-2\cos x+\ln \cos x]_{0}^{\dfrac{\pi}{3}}$$
    $$|2\ln|\cos x|1-4\cos x|_{0}^{\dfrac{\pi}{3}}$$
    $$=2-2\ln 2$$

  • Question 3
    1 / -0
    The area of the region bounded by the curve $${a}^{4}{y}^{2}=\left(2a-x\right){x}^{5}$$ is to that of the circle whose radius is $$a$$, is given by the ratio
    Solution
    Given curve $${a}^{4}{y}^{2}=\left(2a-x\right){x}^{5}$$
    cut off $$x-$$axis,when $$y=0$$
    $$0=\left(2a-x\right){x}^{5}$$ is
    $${A}_{1}=\int_{0}^{2a}{\dfrac{\sqrt{\left(2a-x\right)}{x}^{\frac{5}{2}}}{{a}^{2}}dx}$$
    Put $$x=2a{\sin}^{2}{\theta}$$
    $$\therefore dx=4a\sin{\theta}\cos{\theta}d\theta$$
    $$\therefore {A}_{1}=\int_{0}^{{\frac{\pi}{2}}}{\dfrac{\sqrt{2a}\cos{\theta}{\left(2a\right)}^{\frac{5}{2}}{\sin}^{5}{\theta}\times 4a\sin{\theta}\cos{\theta}}{{a}^{2}}d\theta}$$
         $$=32{a}^{2}\int_{0}^{\frac{\pi}{2}}{{\sin}^{6}{\theta}{\cos}^{2}{\theta}d\theta}$$
         $$=32{a}^{2}\dfrac{\left(5.3.1\right)\left(1\right)}{8.6.4.2}.\dfrac{\pi}{2}$$ (by Walli's formula)
        $$=\dfrac{5\pi{a}^{2}}{8}$$
    Area of circle,$${A}_{2}=\pi{a}^{2}$$
      $$\therefore \dfrac{{A}_{1}}{{A}_{2}}=\dfrac{5}{8}$$
    $$\Rightarrow {A}_{1}:{A}_{2}=5:8$$
  • Question 4
    1 / -0
    The area of the region described by $$A=((x,y): {x}^{2}+{y}^{2}\le1)$$ and $$B=((x,y):{y}^{2}\le1-x)$$
    Solution
    Area $$ABCA$$ $$\dfrac{\pi}{2}r^{2}=\dfrac{\pi}{2}$$
    Due to symmetry
    $$ADCA=2AODA$$
    $$=2\int_{0}^{1}{\sqrt{1-x}}$$
    $$=\dfrac{-2[(1-x)^{{3}/{2}}]_{0}^{1}}{\dfrac{3}{2}}$$
    $$=\dfrac{-4}{2}{-1}=\dfrac{4}{3}$$
    Hence the total area = $$\dfrac{\pi}{2} $$+ $$ \dfrac {4}{3}$$

  • Question 5
    1 / -0
    Area bounded by the curves $$y=\left[\dfrac{{x}^{2}}{64}+2\right], y=x-1$$ and $$x=0$$ above $$x-$$axis is ($$\left[.\right]$$ denotes the greatest integer function.)
    Solution
    From the figure shown
    $$-8<x<8\Rightarrow y=2$$
    $$\therefore$$ Required Area$$=\dfrac{1}{2}\left(1+3\right)\times 2$$
                                        $$=4$$.sq.unit.

  • Question 6
    1 / -0
    Area of the region bounded by the curves $$y\left|y\right|\pm x\left|x\right|=1$$ and $$y=\left|x\right|$$ is: 
    Solution
    In First quadrant $${y}^{2}\pm{x}^{2}=1$$
    and in Second quadrant  $${y}^{2}\pm{x}^{2}=1$$
    i.e., $${y}^{2}+{x}^{2}=1$$ 
    and $${y}^{2}-{x}^{2}=1$$
    and in Third quadrant  $$-{y}^{2}-{x}^{2}=1$$
    and in fourth quadrant $$-{y}^{2}\pm{x}^{2}=1$$
    i.e., $${x}^{2}-{y}^{2}=1$$                          $$\left(\because -{x}^{2}-{y}^{2}\neq1\right)$$
    $$\therefore $$Required Area$$=$$area of $$OABCO$$
                                          $$=\dfrac{1}{4}$$(area of circle)
                                          $$=\dfrac{1}{4}\pi{r}^{2}$$
                                          $$=\dfrac{1}{4}\pi{\left(1\right)}^{2}$$
                                          $$=\dfrac{\pi}{4}$$sq.units

  • Question 7
    1 / -0
    Find the area included between the parabolas $$y^{2} = x$$ and $$x = 3 - 2y^{2}$$.
    Solution
    $$A=(1,1)$$  ,  $$B=(0,\sqrt{\dfrac{3}{2}})$$   ,   $$C=(0,-\sqrt{\dfrac{3}{2}})$$   ,   $$D=(1,-1)$$
    Due to symmetry we can just calculate the area in the first quadrant and multiply by 2
    $$=\int_{0}^{1}{3-2y^{2}}dy -\int_{0}^{1}y^{2}dy$$
    $$=[3y-\dfrac{2y^{3}}{3}]-\dfrac{y^{3}}{3}=3-\dfrac{2}{3}-\dfrac{1}{3}$$
    Area of first quadrant $$=2$$
    $$Total\  \text {area} = 4$$

  • Question 8
    1 / -0
    The area of the region bounded by $$1-{y}^{2}=\left|x\right|$$ and $$\left|x\right|+\left|y\right|=1$$ is
    Solution

    $$1-y^{2}=|x|$$
    $$|x|+|y|=1$$
    $$\begin{aligned} \text { Area } &=\int_{0}^{1} x d y \\ &=\int_{0}^{1}\left(1-y^{2}\right) d y \end{aligned}$$
    $$=\left[y-\dfrac{y^{3}}{3}\right]_{0}^{1}$$
    $$=1-1 / 3$$
    $$=\dfrac{2}{3}$$ sq.unit (Area of one region)
    $$\begin{aligned} \text { Area }  &=\dfrac{2}{3}-\dfrac{1}{2} \\ &=4\left[\dfrac{2}{3}-\dfrac{1}{2}\right] \\ &=\dfrac{4}{6}=\dfrac{2}{3} \text { squnits } \end{aligned}$$
    Correct option is (B).

  • Question 9
    1 / -0
    The area of the figure bounded by the curves $$y=\left|x-1\right|$$ and $$y=3-\left|x\right|$$ is
    Solution
    Since, $$y=\left|x-1\right|=\begin{cases}x-1;x\ge 1  \\ 1-x, x<1 \end{cases}$$                  ..................$$\left(1\right)$$
    and $$y=3-\left|x\right|=\begin{cases} 3-x;  x\ge 0 \\ 3+x; x<0\end{cases}$$                        ..................$$\left(2\right)$$
    Solving eqns$$\left(1\right)$$ and $$\left(2\right)$$, we get
    $$x=2$$ and $$x=-1$$
    $$\therefore$$ Required Area$$=\left|\int_{-1}^{2}{\left(3\left|x\right|-\left|x-1\right|\right)}\right|$$
                             $$=\left|\int_{-1}^{0}{\left(2x+2\right)dx}+\int_{0}^{1}{2.dx}+\int_{1}^{2}{\left(4-2x\right)dx}\right|$$
                            $$=\left[{x}^{2}+2x\right]_{-1}^{0}+\left[2x\right]_{0}^{1}+\left[4x-{x}^{2}\right]_{1}^{2}$$
                          $$=4$$.sq.unit.
  • Question 10
    1 / -0
    The area between the curve $$y=2{x}^{4}-{x}^{2},$$ the $$x-$$axis and the ordinates of two minima of the curve is:
    Solution
    $$y=2{x}^{4}-{x}^{2}$$
    $$\therefore \dfrac{dy}{dx}=8{x}^{3}-2x,$$ for max. or min. $$\dfrac{dy}{dx}=0$$
    $$x=-\dfrac{1}{2},0,\dfrac{1}{2}$$
    Then, $$\left(\dfrac{{d}^{2}y}{d{x}^{2}}\right)_{x=-\frac{1}{2}}>0, \left(\dfrac{{d}^{2}y}{d{x}^{2}}\right)_{x=0}<0$$
    and $$\left(\dfrac{{d}^{2}y}{d{x}^{2}}\right)_{x=\frac{1}{2}}>0$$
    $$\therefore $$Required Area$$=\left|\int_{-\frac{1}{2}}^{\frac{1}{2}}{\left(2{x}^{4}-{x}^{2}\right)dx}\right|$$
                                  $$=\left[\dfrac{2{x}^{5}}{5}-\dfrac{{x}^{3}}{3}\right]_{-\frac{1}{2}}^{\frac{1}{2}}$$
                                 $$=\dfrac{7}{120}$$.sq.unit.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now