Self Studies

Application of Integrals Test - 29

Result Self Studies

Application of Integrals Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of a loop bounded by the curve $$y=a \sin x$$ and x- axis is 
    Solution

  • Question 2
    1 / -0
    The area bounded by the curves $$\left|x\right|+\left|y\right|\ge 1$$ and $${x}^{2}+{y}^{2}\le 1$$ is:
    Solution
    From the figure shown
    $$\therefore$$ Required Area$$=$$area of the circle$$-$$area of the square.
                                   $$=\pi{\left(1\right)}^{2}-{\left(\sqrt{2}\right)}^{2}$$
                                   $$=\left(\pi-2\right)$$.sq.unit

  • Question 3
    1 / -0
    The area bounded by the curves $$y=\left|x\right|-1$$ and $$y=-\left|x\right|+1$$ is
    Solution
    Required area$$=$$shaded area$$={\left(\sqrt{2}\right)}^{2}=2$$.sq.unit.

  • Question 4
    1 / -0
    Let $$f\left(x\right)={x}^{2}-3x+2$$ be a function,for all $$x\in R$$. On the basis of given information, answer the given question
    The number of solutions of $$\left|y\right|=\left|f\left(\left|x\right|\right)\right|$$ and $${x}^{2}+{y}^{2}=2$$ is,
    Solution

  • Question 5
    1 / -0
    Let $$f\left(x\right)={x}^{2}-3x+2$$ be a function, for all $$x\in R$$. On the basis of given information, answer the given question.
    The area bounded by $$f\left(x\right),$$ the $$x-$$axis and $$y-$$axis is,
    Solution

  • Question 6
    1 / -0
    The area of the figure bounded by two branches of the curve $${\left(y-x\right)}^{2}={x}^{3}$$ and the straight line $$x=1$$ is:
    Solution
    Given curve is $${\left(y-x\right)}^{2}={x}^{3}$$
    $$\Rightarrow y-x=\pm x\sqrt{x}$$
    or $$y=x\pm x\sqrt{x}$$
    $$\therefore$$ Required Area$$=\left|\int_{0}^{1}{\left[(x+x\sqrt{x}\right)-\left(x-x\sqrt{x})\right]dx}\right|$$
                                  $$=\left|2\int_{0}^{1}{{x}^{\frac{3}{2}}dx}\right|$$
                                  $$=2\left[\dfrac{{x}^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{1}$$
                                  $$=\left|2.\dfrac{2}{5}\right|=\dfrac{4}{5}$$.sq.unit.

  • Question 7
    1 / -0
    The area bounded by $$y=2-\left|2-x\right| , y=\dfrac{3}{\left|x\right|}$$ is
    Solution
    $$y=2-\left|2-x\right|, y=\dfrac{3}{\left|x\right|}$$
    $$y=\begin{cases}x; x\le 2 \\ 4-x; x\ge 2\end{cases}$$ and
    $$y=\begin{cases} \dfrac{3}{x}; x>0 \\-\dfrac{3}{x}; x<0  \end{cases}$$
    Hence,Required Area$$PQRSP=$$area$$PQRP+$$area$$PRSP$$
                                  $$=\left|\int_{\sqrt{3}}^{2}{\left(x-\dfrac{3}{x}\right)dx}\right|+\left|\int_{2}^{3}\left[\left(4-x\right)-\dfrac{3}{x}\right]dx\right|$$
    $$=\left[\dfrac{{x}^{2}}{2}-3\ln{x}\right]_{\sqrt{3}}^{2}+\left[4x-\dfrac{{x}^{2}}{2}-3\ln{x}\right]_{2}^{3}$$
    On simplification,we get
    $$=\dfrac{4-3\ln{3}}{2}$$.sq.unit

  • Question 8
    1 / -0
    If $$f\left(x+y\right)=f\left(x\right)+f\left(y\right)-xy$$ for all $$x,y\in R$$ and $$\lim _{ h\rightarrow 0 }{ \frac { f(h) }{ h }  } =3$$, then the area bounded by the curves $$y=f\left(x\right)$$ and $$y={x}^{2}$$ is:
    Solution
    Put $$x=y=0$$
    $$\Rightarrow f\left(0\right)=0$$
    Now, 
    $${f}{'}\left(x\right)=\displaystyle \lim_{h\rightarrow 0}{\dfrac{f\left(x+h\right)-f\left(x\right)}{h}}$$
                                          $$=\displaystyle \lim_{h\rightarrow 0}{\dfrac{f\left(x\right)+f\left(h\right)-hx-f\left(x\right)}{h}}$$
                                          $$=\displaystyle \lim_{h\rightarrow 0}{\dfrac{f\left(h\right)}{h}}-x=3-x$$
    $$\therefore f\left(x\right)=3x-\dfrac{{x}^{2}}{2}+c$$ and $$f\left(0\right)=0$$
    $$\Rightarrow c=0$$
    $$\therefore f\left(x\right)=3x-\dfrac{{x}^{2}}{2}$$
    Required Area$$=\left|\int_{0}^{2}{\left(3x-\dfrac{{x}^{2}}{2}-{x}^{2}\right)}dx\right|$$
                      $$=\left(\dfrac{3{x}^{2}}{2}-\dfrac{3{x}^{3}}{6}\right)_{0}^{2}$$
                      $$=6-4=2$$
  • Question 9
    1 / -0
    The area bounded by the curve $$y={(x-1)}^{2},\ ={(x+1)}^{2}$$ and the $$x-axis$$ is
    Solution
    $$A=2\int _{ 0 }^{ 1 }{ (x-1) }^{ 2 }dx\\ A={ [\cfrac { { (x-1) }^{ 3 } }{ 3 } ] }_{ 0 }^{ 1 }$$
    $$A=2[0-\cfrac{-1}{3}]$$
    $$A=\cfrac{2}{3}\ sq\ units$$

  • Question 10
    1 / -0
    Find the area of the region bounded by the curves $${y}^{2}=4ax$$ and $${x}^{2}=4ay$$.
    Solution
    $${y^2} = 4ax - \left( 1 \right)$$
    $${x^2} = 4ay - \left( 2 \right)$$
    Solving equation 1 & 2
    $${y^2} = 4ax$$
    $$ \Rightarrow {\left( {\dfrac{{{x^2}}}{{4a}}} \right)^2} = 4ax$$
    $$ \Rightarrow \dfrac{{{x^4}}}{{16{a^2}}} = 4ax$$
    $$ \Rightarrow {x^4} = 64{a^3}x$$
    $$ \Rightarrow {x^4} - 64{a^3}x = 0$$
    $$ \Rightarrow x\left( {{x^3} - 64{a^3}} \right) = 0$$
    $$ \Rightarrow x = 0\,\,{x^3} = 64{a^3}\,\,\,x = 4a$$
    Area bounded 
    $$ = \int\limits_0^{4a} {\left( {\sqrt {4ax}  - \frac{{{x^2}}}{{4a}}} \right)} dx$$
    $$ = \int\limits_0^{4a} {\left( {2\sqrt a \sqrt x  - \frac{{{x^2}}}{{4a}}} \right)} dx$$
    $$ = 2\sqrt a \int\limits_0^{4a} {\sqrt x dx - \frac{1}{{4a}}\int\limits_0^{4a} {{x^2}dx} } $$
    $$ = {\left[ {2\sqrt a  \times \frac{{2{x^{3/2}}}}{3}} \right]_0}^{4a} - \frac{1}{{4a}}{\left[ {\frac{{{x^3}}}{3}} \right]_0}^{4a}$$
    $$ = \dfrac{{4\sqrt a }}{3}\left[ {{{\left( {4a} \right)}^{3/2}}} \right] - \frac{1}{{12a}}\left[ {64{a^3}} \right]$$
    $$ = \dfrac{{4\sqrt a }}{3} \times 8a\sqrt a  - \frac{{16}}{{3a}} \times {a^3}$$
    $$ = \dfrac{{32{a^2}}}{3} - \frac{{16{a^2}}}{3}$$
    $$ = \dfrac{{16}}{3}{a^2}$$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now