Self Studies

Application of Integrals Test - 30

Result Self Studies

Application of Integrals Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of the region bounded by the curve $$y={25}^{x}+16$$ and curve $$y=b.{5}^{x}+4$$ whose tangent at the point $$x=1,$$ makes an angle $${\tan}^{-1}\left(40\log{5}\right)$$ with the $$x-$$axis is:
    Solution
    For $$x=1,y=b.{5}^{x}+4=5b+4$$ and 
    $$\dfrac{dy}{dx}=b.{5}^{x}\log{5}$$
    $$\Rightarrow 5b\log{5}=40\log{5}$$
    $$\Rightarrow b=8$$
    The two curves intersect at points where
    $$8.{5}^{x}+4={25}^{x}+16$$
    $$\Rightarrow {5}^{2x}-8.{5}^{x}+12=0$$
    On factorizing we get
    $$x=\log_{5}{2},x=\log_{5}{6}$$
    Hence the area of the given region
    $$=\int_{\log_{5}{2}}^{\log_{5}{6}}{\left[8.{5}^{x}-{25}^{x}-12\right]dx}$$
    $$=\left[\dfrac{8.{5}^{x}}{\log_{e}{5}}-12x-\dfrac{{25}^{x}}{\log_{e}{25}}\right]_{\log_{5}{2}}^{\log_{5}{6}}$$
    $$=\dfrac{-{5}^{\log_{5}{36}}}{\log_{e}{5}}+\dfrac{8.{5}^{x}}{\log_{e}{5}}-12\left(\log_{5}{6}-\log_{5}{2}\right)+\dfrac{{5}^{\log_{5}{4}}}{\log_{e}{25}}-\dfrac{16}{\log_{e}{5}}$$
    On simplification, we get
    $$=\dfrac{16}{\log_{e}{5}}-12\log_{e}{3}$$
    $$=4\log_{5}{{e}^{4}}-4\log_{5}{27}$$
    $$=4\log_{5}{\left(\dfrac{{e}^{4}}{27}\right)}$$
  • Question 2
    1 / -0
    A curve is such that the area of the region bounded by the coordinates axes, the curve and the ordinate of any point on it is equal to the cube of that ordinate the curve represent.
    Solution

    Given that,

    The curve and the coordinate of any point on its equal to the cube of

    that ordinates.

    Let (h, k) be point on it is equal to the cube of that ordinate.

    Given the area of the region bounded by the co-ordinate axis in above figure.

    We know that the area of rectangle is

    $$Area=length\times breath$$

    But Given that ,

    Ordinate of point $$=k$$

    $$h\times k={{k}^{3}}\,$$                  (given function )

    $$h={{k}^{2}}$$

    Hence it represent the parabola.
    hence option $$(C)$$ is correct.

  • Question 3
    1 / -0
    The area enclosed between the curves $$y = log ( x+ e) ; x = log_e \left(\dfrac{1}{y}\right)$$ and x-axis is
    Solution
    $$e^{y}=-\ln y+e$$
    $$e^{y}+\ln y=e$$
    $$\int_{0}^{0.642}{\log(x+e)}dx+\int_{0.642}^{\infty}{e^{-x}}dx$$
    $$[x\log(x+e)-x]_{0}^{0.642}-[e^{-x}]_{0.642}^{\infty}$$
    $$0.642\log(0.642+e)-0.642+e^{-0.642}$$
    $$=0.222$$

  • Question 4
    1 / -0
    The area common to the circle $${x}^{2}+{y}^{2}=16{a}^{2}$$ and the parabola $${y}^{2}=6ax$$ is
    Solution
    $${x^2} + {y^2} = 16{a^2} - \left( 1 \right)$$
    $${y^2} = 6ax - \left( 2 \right)$$
    $$solving\,eq\left( 1 \right)\left( 2 \right)$$
    $${x^2} + 6ax = 16{a^2}$$
    $${x^2} + 6ax - 16{a^2} = 0$$
    $${x^2} + 8ax - 2ax - 16{a^2} = 0$$
    $$x\left( {x + 8a} \right) - 2a\left( {x + 8a} \right) = 0$$
    $$\left( {x + 8a} \right)\left( {x - 2a} \right) = 0$$
    $$x = 2a, - 8a$$
    $$Area\,bounded = 2\left[ {\int\limits_0^{2a} {{y_1}dx + \int\limits_{2a}^{4a} {{y_2}dx} } } \right]$$
    $$ = 2\left[ {\int\limits_0^{2a} {\sqrt {6a} \sqrt x dx + \int\limits_{2a}^{4a} {\sqrt {{{\left( {4a} \right)}^2} - {x^2}} } } dx} \right]$$
    $$ = 2\left[ {{{\left( {\sqrt {6a} \frac{{{x^{3/2}}}}{{3/2}}} \right)}_0}^{2a} + {{\left( {\frac{x}{2}\sqrt {16{a^2} - {x^2}}  + \dfrac{{16{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{{4a}}} \right)}_{2a}}^{4a}} \right]$$
    $$= 2\left[ {\dfrac{2}{3}\sqrt {6a} {{\left( {2a} \right)}^{3/2}} + \left( {8{a^2} \times \frac{\pi }{2} - \left( {a\sqrt {12{a^2}}  + 8{a^2} \times \dfrac{\pi }{6}} \right)} \right)} \right]$$
    $$= 2\left[ {\dfrac{{8\sqrt 3 }}{3}{a^2} + \dfrac{{8\pi {a^2}}}{3} - 2\sqrt 3 {a^2}} \right]$$
    $$ = 2\left[ {\dfrac{{2\sqrt 3 }}{3}{a^2} + \dfrac{{8\pi {a^2}}}{3}} \right]$$
    $$ = 4\left( {\dfrac{{\sqrt 3 {a^2} + 4\pi {a^2}}}{3}} \right)$$
    $$ = \dfrac{{4{a^2}\left( {\sqrt 3  + 4\pi } \right)}}{3}$$
  • Question 5
    1 / -0
    The area bounded by the curve : $$max $${|x|,|y|}$$ = 5$$ is
    Solution
    $$max[|x|,|y|]=5$$
    $$area=4\times5\times5$$
    $$=100$$

  • Question 6
    1 / -0

    Directions For Questions

    A continuous function $$f\left(x\right)$$ satisfying $${x}^{4}-4{x}^{2}\le f\left(x\right)\le 2{x}^{2}-{x}^{3}$$ for all $$x\in\left[0,2\right]$$ such that the area bounded by $$y=f\left(x\right),y={x}^{4}-4{x}^{2}$$ the $$y-$$axis and the line $$x=t\left(0\le t\le 2\right)$$ is $$k$$ times the area bounded by $$y=f\left(x\right),y=2{x}^{2}-{x}^{3},y-$$axis and the line $$x=t, \left(0\le t\le 2\right).$$ Answer the following questions:

    ...view full instructions

    The value of $$\int_{-1}^{1}{f\left(x\right)dx},$$ is
    Solution
    $$\int_{0}^{t}{\left(f\left(x\right)-\left({x}^{4}-4{x}^{2}\right)\right)dx}=k\int_{0}^{t}{\left(2{x}^{2}-{x}^{3}-f\left(x\right)\right)dx}$$
    Differentiating w.r.t $$t$$ we get
    $$f\left(t\right)-{t}^{4}+4{t}^{2}=k\left(2{t}^{2}-{t}^{3}-f\left(t\right)\right)$$
    $$\Rightarrow \left(1+k\right)f\left(t\right)={t}^{4}-4{t}^{2}+k\left(2{t}^{2}-{t}^{3}\right)$$
    $$\therefore f\left(t\right)=\dfrac{{t}^{4}-4{t}^{2}+k\left(2{t}^{2}-{t}^{3}\right)}{k+1}$$
    $$\int_{-1}^{1}{f\left(x\right)dx}=\int_{-1}^{1}{\dfrac{{x}^{4}-4{x}^{2}+k\left(2{x}^{2}-{x}^{3}\right)}{k+1}dx}$$
    $$=\int_{-1}^{1}{\dfrac{{x}^{4}-k{x}^{3}+\left(2k-4\right){x}^{2}}{k+1}dx}$$
    We know that $$\int_{-a}^{a}{f\left(x\right)dx}=0$$ if $$f\left(x\right)=-f\left(x\right)$$
    Thus,$$\int_{-1}^{1}{{x}^{3}dx}=0$$.Thus the above integral becomes,
    $$\int_{-1}^{1}{\dfrac{{x}^{4}+\left(2k-4\right){x}^{2}}{k+1}dx}$$
    Using the concept $$\int_{-a}^{a}{f\left(x\right)dx}=2\int_{0}^{a}{f\left(x\right)dx}$$ we have
    $$=\dfrac{2}{k+1}\left[\dfrac{{x}^{5}}{5}\right]_{0}^{1}+\dfrac{2k-4}{k+1}\times 2\left[\dfrac{{x}^{3}}{3}\right]_{0}^{1}$$
    $$=\dfrac{2}{k+1}\times \dfrac{1}{5}+\dfrac{4k-8}{k+1}\dfrac{1}{3}$$
    $$=\dfrac{6+20k-40}{15\left(k+1\right)}$$
    $$=\dfrac{20k-34}{15\left(k+1\right)}=\dfrac{2\left(10k-17\right)}{15\left(k+1\right)}$$

  • Question 7
    1 / -0
    Find the area of the region $$\{(x, y):x^2+y^2\leq 4, x+y\geq 2\}$$.
    Solution
    $$A=$$area$$(OAB)-$$ area of$$\triangle{OAB}\\=\cfrac{1}{4}(\pi. 2^2)-\cfrac{1}{2}\times 2\times 2\\=\pi-2$$

  • Question 8
    1 / -0
    The common area between the curve $$x^{2}+ y^{2}=8$$ and $$ y^{2}=2x$$ is
    Solution
    $$y^2=2x$$
    $$y^2=8-x^2$$
    $$\Rightarrow \ 8x^2=2x$$
    $$x^2+2x=8$$
    $$\Rightarrow \ (x+1)^2=9$$
    $$\Rightarrow \ x=\pm 3-1$$
    $$=2-4$$
    $$x=2\ \Rightarrow \ y=\pm 2$$
    $$A(2, 2),\ B(2, -2)$$
    $$Ar=\displaystyle \int _{-2}^{2} (\sqrt {8-y^2} -y^2 /2) dy$$
    $$=2\displaystyle \int _{0}^{2} (\sqrt {8-y^2} -y^2 /2) dy$$
    $$=\left [\dfrac {y\sqrt {8-y^2}}{3} + \dfrac {8}{2}\sin^{-1} \left (\dfrac {x}{\sqrt 8} \right) -\dfrac {1}{2} y^3 /3\right]^2$$
    $$=\left [\dfrac {2\sqrt {8-4}}{2}+4\sin^{-1} \left (\dfrac {2}{\sqrt 8} \right) - \dfrac {1}{2} \dfrac {8}{3} - 0-0 \right]$$
    $$=2\left [2+4 \pi /4 -4/3 \right]$$
    $$=2[\pi +2/3]=2\pi +4/3$$
  • Question 9
    1 / -0
    Let $$P(x, y)$$ be a moving point in the $$x-y$$ plane such that $$[x].[y]=2$$, where [.] denotes the greatest integer function, then area of the region containing the points $$P(x, y)$$ is equal to:
    Solution
    $$[x][y]=2$$
    Hence the area $$=4\times1$$
    $$=4$$

  • Question 10
    1 / -0
    If $$\theta \le x\le \pi$$; then the area bounded by the curve $$y=x$$ and $$y=x+\sin x$$ is
    Solution
    $$A=\int _{ 0 }^{ \pi }x+\sin{x}-xdx$$
    $$A=\int _{ 0 }^{ \pi }\sin{x}dx$$
    $$A={ [-\cos x] }_{ 0 }^{ \pi}$$
    $$A=-cos \pi -cos 0$$
    $$a=1-(-1)=2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now