$${x^2} + {y^2} = 16{a^2} - \left( 1 \right)$$
$${y^2} = 6ax - \left( 2 \right)$$
$$solving\,eq\left( 1 \right)\left( 2 \right)$$
$${x^2} + 6ax = 16{a^2}$$
$${x^2} + 6ax - 16{a^2} = 0$$
$${x^2} + 8ax - 2ax - 16{a^2} = 0$$
$$x\left( {x + 8a} \right) - 2a\left( {x + 8a} \right) = 0$$
$$\left( {x + 8a} \right)\left( {x - 2a} \right) = 0$$
$$x = 2a, - 8a$$
$$Area\,bounded = 2\left[ {\int\limits_0^{2a} {{y_1}dx + \int\limits_{2a}^{4a} {{y_2}dx} } } \right]$$
$$ = 2\left[ {\int\limits_0^{2a} {\sqrt {6a} \sqrt x dx + \int\limits_{2a}^{4a} {\sqrt {{{\left( {4a} \right)}^2} - {x^2}} } } dx} \right]$$
$$ = 2\left[ {{{\left( {\sqrt {6a} \frac{{{x^{3/2}}}}{{3/2}}} \right)}_0}^{2a} + {{\left( {\frac{x}{2}\sqrt {16{a^2} - {x^2}} + \dfrac{{16{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{{4a}}} \right)}_{2a}}^{4a}} \right]$$
$$= 2\left[ {\dfrac{2}{3}\sqrt {6a} {{\left( {2a} \right)}^{3/2}} + \left( {8{a^2} \times \frac{\pi }{2} - \left( {a\sqrt {12{a^2}} + 8{a^2} \times \dfrac{\pi }{6}} \right)} \right)} \right]$$
$$= 2\left[ {\dfrac{{8\sqrt 3 }}{3}{a^2} + \dfrac{{8\pi {a^2}}}{3} - 2\sqrt 3 {a^2}} \right]$$
$$ = 2\left[ {\dfrac{{2\sqrt 3 }}{3}{a^2} + \dfrac{{8\pi {a^2}}}{3}} \right]$$
$$ = 4\left( {\dfrac{{\sqrt 3 {a^2} + 4\pi {a^2}}}{3}} \right)$$
$$ = \dfrac{{4{a^2}\left( {\sqrt 3 + 4\pi } \right)}}{3}$$