$$ {{x}^{2}}+{{y}^{2}}-6x-4y+12\le 0 $$
$$ \Rightarrow {{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}\le 1 $$
$$ \operatorname{Re}quired\,Area=\int\limits_{2}^{5/2}{xdx-\int\limits_{2}^{5/2}{2+\sqrt{1+{{\left( x-3 \right)}^{2}}}dx}} $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\left[ \frac{{{x}^{2}}}{2} \right]_{2}^{5/2}-\left[ 2x \right]_{2}^{5/2}-\int\limits_{2}^{5/2}{\sqrt{1+{{\left( x-3 \right)}^{2}}}dx} $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\left( \frac{25}{8}-2 \right)-\left( 5-4 \right)-\left[ \left( \frac{x-3}{2} \right)\sqrt{1+{{\left( x-3 \right)}^{2}}}+\frac{1}{2}{{\sin }^{-1}}\left( x-3 \right) \right]_{2}^{5/2} $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\frac{25}{8}-2-1-\left[ \left( \frac{-1}{4}\sqrt{1-\frac{1}{4}}+\frac{1}{2}{{\sin }^{-1}}\left( \frac{-1}{2} \right) \right)-\left( 0+\frac{1}{2}{{\sin }^{-1}}\left( -1 \right) \right) \right] $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\frac{1}{8}-\left[ \left( \frac{-\sqrt{3}}{8}-\frac{\pi }{12} \right)-\left( 0-\frac{\pi }{4} \right) \right] $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\frac{1}{8}+\frac{\sqrt{3}}{8}+\frac{\pi }{12}-\frac{\pi }{4} $$
$$ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\frac{1+\sqrt{3}}{8}-\frac{\pi }{6} $$