We have,
$${{x}^{2}}+{{y}^{2}}=1$$
$${{y}_{1}}=\sqrt{1-{{x}^{2}}}$$
……. (1)
$$\left| y
\right|=1-{{x}^{2}}$$
$$y=1-{{x}^{2}}$$ ……. (2)
So, area of first quadrant
$$=\int_{0}^{1}{\left(
{{y}_{1}}-{{y}_{2}} \right)}dx$$
$$
=\int_{0}^{1}{\left( \sqrt{1-{{x}^{2}}}-\left( 1-{{x}^{2}} \right) \right)}dx $$
$$
=\int_{0}^{1}{\left( \sqrt{1-{{x}^{2}}} \right)}dx-\int_{0}^{1}{\left(
1-{{x}^{2}} \right)}dx $$
We know that
$$\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{1}{2}a\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{1}{2}{{a}^{2}}{{\sin
}^{-1}}\left( \dfrac{x}{a} \right)+C$$
Therefore,
$$ =\left[ \dfrac{1}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin
}^{-1}}\left( x \right) \right]_{0}^{1}-\left( x-\dfrac{{{x}^{3}}}{3}
\right)_{0}^{1} $$
$$ =\left[ \left( \dfrac{1}{2}\sqrt{1-1}+\dfrac{1}{2}{{\sin
}^{-1}}\left( 1 \right) \right)-\left( \dfrac{1}{2}\sqrt{1-0}+\dfrac{1}{2}{{\sin
}^{-1}}\left( 0 \right) \right) \right]-\left[ \left( 1-\dfrac{1}{3} \right)-0
\right] $$
$$ =\left[ \left(
0+\dfrac{1}{2}{{\sin }^{-1}}\left( \sin \dfrac{\pi }{2} \right) \right)-\left(
\dfrac{1}{2}+\dfrac{1}{2}{{\sin }^{-1}}\left( \sin 0 \right) \right) \right]-\dfrac{2}{3}
$$
$$ =\dfrac{\pi
}{4}-\dfrac{1}{2}-\dfrac{2}{3} $$
$$ =\dfrac{\pi
}{4}-\left( \dfrac{3+4}{6} \right) $$
$$ =\dfrac{\pi
}{4}-\dfrac{7}{6} $$
$$ =\dfrac{3\pi
-14}{12} $$
Therefore,
Area of all quadrants
$$ =4\times \left( \dfrac{3\pi-14}{12}
\right) $$
$$ =\dfrac{3\pi-14}{3}
$$
Hence, this is the
answer.