Self Studies

Application of Integrals Test - 32

Result Self Studies

Application of Integrals Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The are included between the curves $$y^2 = 4ax \,$$ and $$\, x^2 = 4 ay$$ is ____  sq units.
    Solution
    We have, $$y^2 = 4ax$$ --------------------------- (1)  

    $$x^2 = 4ay$$ ---------------------------- (2)  

    (1) and (2) intersects hence  

    $$x = \dfrac{y^2}{4a}$$ (a > 0)  

    $$\Rightarrow  (\dfrac{y^2}{4a})^2 = 4ay  $$

    $$\Rightarrow  y^4 = 64a^3y  $$

    $$\Rightarrow  y^4 – 64a^3y = 0  $$

    $$\Rightarrow  y[y^3 – (4a)^{3}] = 0  $$

    $$\Rightarrow  y = 0, 4a  $$

    When y = 0, x = 0 and when y = 4a, x = 4a.  

    The points of intersection of (1) and (2) are O(0, 0) and A(4a, 4a). 

    Area$$=\int_{b}^{a}\left [ y_1-y_2 \right ]dx$$

    $$=\int_{0}^{4a}\left [ \sqrt{4ax}-\dfrac{x^2}{4a} \right ]dx$$

    $$\left [ \dfrac{4\sqrt{a}}{3}(x)^{\dfrac{3}{2}} - \dfrac{x^3}{12a}\right ]_0^{4a}$$

    $$=\dfrac{32a^2}{3}-\dfrac{16a^2}{3}$$

    $$=\dfrac{16a^2}{3}$$
  • Question 2
    1 / -0
    The area of the region enclosed by the curves $$y=x$$, $$x=e$$, $$y=\dfrac{1}{x}$$ and the positive $$x-axis$$ is . 
    Solution
    $$A=\int _{ 0 }^{ 1 }{ x } dx+\int _{ 0 }^{ e }{ \cfrac { 1 }{ x }  } dx\\ A={ [\cfrac { { x }^{ 2 } }{ 2 } ] }_{ 0 }^{ 1 }+{ [\ln { x } ] }_{ 1 }^{ e }\\ A=\cfrac { 1 }{ 2 } +\ln { e } -\ln { 1 } \\ A=\cfrac { 1 }{ 2 } +1-0\\ A=\cfrac { 3 }{ 2 } $$

  • Question 3
    1 / -0
    The area bounded by the curve $$y=cos ax$$ in one are of the curve is where $$a=4n+1,n\in integer$$
    Solution
    Area $$ = \left| {\int\limits_0^{\dfrac{\pi }{2}} {\cos \,ax\,dx} } \right|$$

    $$ = {\left[ {\dfrac{{\sin \,\,ax\,\,}}{a}} \right]_0}^{\dfrac{\pi }{2}}$$

    $$ = \dfrac{1}{a} - 0$$

    $$ = \dfrac{1}{a}$$
  • Question 4
    1 / -0
    Area enclosed between the curves $$\left| y \right| = 1 - {x^2}$$ and $${x^2} + {y^2} = 1$$ is 
    Solution

    We have,

    $${{x}^{2}}+{{y}^{2}}=1$$

    $${{y}_{1}}=\sqrt{1-{{x}^{2}}}$$      ……. (1)

     

    $$\left| y \right|=1-{{x}^{2}}$$

    $$y=1-{{x}^{2}}$$      ……. (2)

     

    So, area of first quadrant

    $$=\int_{0}^{1}{\left( {{y}_{1}}-{{y}_{2}} \right)}dx$$

    $$ =\int_{0}^{1}{\left( \sqrt{1-{{x}^{2}}}-\left( 1-{{x}^{2}} \right) \right)}dx $$

    $$ =\int_{0}^{1}{\left( \sqrt{1-{{x}^{2}}} \right)}dx-\int_{0}^{1}{\left( 1-{{x}^{2}} \right)}dx $$

     

    We know that

    $$\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{1}{2}a\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{1}{2}{{a}^{2}}{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+C$$

     

    Therefore,

    $$ =\left[ \dfrac{1}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}\left( x \right) \right]_{0}^{1}-\left( x-\dfrac{{{x}^{3}}}{3} \right)_{0}^{1} $$

    $$ =\left[ \left( \dfrac{1}{2}\sqrt{1-1}+\dfrac{1}{2}{{\sin }^{-1}}\left( 1 \right) \right)-\left( \dfrac{1}{2}\sqrt{1-0}+\dfrac{1}{2}{{\sin }^{-1}}\left( 0 \right) \right) \right]-\left[ \left( 1-\dfrac{1}{3} \right)-0 \right] $$

    $$ =\left[ \left( 0+\dfrac{1}{2}{{\sin }^{-1}}\left( \sin \dfrac{\pi }{2} \right) \right)-\left( \dfrac{1}{2}+\dfrac{1}{2}{{\sin }^{-1}}\left( \sin 0 \right) \right) \right]-\dfrac{2}{3} $$

    $$ =\dfrac{\pi }{4}-\dfrac{1}{2}-\dfrac{2}{3} $$

    $$ =\dfrac{\pi }{4}-\left( \dfrac{3+4}{6} \right) $$

    $$ =\dfrac{\pi }{4}-\dfrac{7}{6} $$

    $$ =\dfrac{3\pi -14}{12} $$

     

    Therefore,

    Area of all quadrants

    $$ =4\times \left( \dfrac{3\pi-14}{12} \right) $$

    $$ =\dfrac{3\pi-14}{3} $$

     

    Hence, this is the answer.

  • Question 5
    1 / -0
    The area bounded by the curves $$y=xe, y=-xe$$ and the line $$x=1$$ is-
    Solution

    Consider the given curves.

    $$y=xe$$

    $$y=-xe$$

    $$x=1$$

     

    Therefore, area bounded by these curves

    $$ =\int_{0}^{1}{\left( xe-\left( -xe \right) \right)}dx $$

    $$ =2e\int_{0}^{1}{x}dx $$

    $$ =2e\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{1} $$

    $$ =e\left[ {{x}^{2}} \right]_{0}^{1} $$

    $$ =e\left[ {{1}^{2}}-0 \right] $$

    $$ =e $$

     

    Hence, this is the answer.

  • Question 6
    1 / -0
    The area bounded by the curves $$y=|x|-1$$ and $$y=-|x|+1$$ is?
    Solution
    Given, $$\begin{cases} x-1 \quad x\ge 0 \\ -x-1\quad x<0 \end{cases}$$  

    $$y=-|x|+1=\begin{cases} -x+1, \quad x\ge 0 \\ x+1\quad x< 0 \end{cases}$$

    Plotting on graph

    $$OA=OB=OC=OD=1\ unit$$
    $$AD=AB=BC=CD=\sqrt{2}\ units$$

    Area of bounded region $$=(\sqrt{2})^{2}=2$$

    $$\therefore$$ Option $$B$$ is correct

  • Question 7
    1 / -0
    Area bounded by curve $$y = k \sin \,x$$ between $$x = \pi$$ and $$x = 2\pi$$, is
    Solution
    $$y=k\sin x, x=[\pi,2\pi]$$
    Area required = Area BCD
    $$=\int_{2\pi}^{\pi}k\sin dx$$
    $$=k\int_{2\pi}^{\pi}\sin xdx$$
    $$k[=\cos x]^{2\pi}_\pi$$
    $$=-k[\cos 2\pi-\cos \pi]$$
    $$=-k[1-(-1)]$$
    $$-2k$$
     since area cannot be negative 
    $$\therefore Area =2ksq.unit$$

  • Question 8
    1 / -0
    Suppose that $$F(\alpha)$$ denotes the area of the region bounded by $$x=0$$, $$x=2$$, $$y^2=4x$$ and $$y=|\alpha x-1|+|\alpha x-2|+\alpha x$$, where $$\alpha \in \{0, 1\}$$. Then the value of $$F(\alpha)+\dfrac{8\sqrt{2}}{3}$$, when $$\alpha =0$$, is
    Solution

  • Question 9
    1 / -0
    The area bounded by the curves $$x^2=4ay$$ and $$y^2=4ax$$ is,
    Solution

  • Question 10
    1 / -0
    The area of the region bounded by the curves $$y=x^2 $$ and $$y = \dfrac {2}{1+x^2} $$ is :
    Solution
    $$y=x^2$$ and $$y=\dfrac {2}{1+x^2}$$
    meeting point
    $$x^2 \left(1+x^2\right)=2$$
    $$x=1$$ and $$x=-1$$ are roots $$\Rightarrow \left(x^2-1\right)$$ is factor
    $$\qquad \quad\left( { x }^{ 2 }+2 \right) \\ \left. { x }^{ 2 }-1 \right) \overline { { x }^{ 4 }+{ x }^{ 2 }-2 } \\ \quad \quad \quad \ { x }^{ 4 }-{ x }^{ 2 }\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \qquad \quad 2{ x }^{ 2 }-2 \qquad \qquad \qquad x^2+2=0\\ \qquad \quad 2{ x }^{ 2 }-2 \qquad \qquad \qquad x^2=-2\ not\ positive\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \qquad \quad 0\quad $$

    $$\displaystyle \therefore area=\int _{ -1 }^{ 1 }{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) dx } $$
    $$\displaystyle =-\left[ \int _{ -1 }^{ 1 }{ \left( { x }^{ 2 }-\dfrac { 2 }{ \left( 1+{ x }^{ 2 } \right)  }  \right) dx }  \right] $$
    $$\displaystyle =-\left[ \int _{ -1 }^{ 1 }{ { x }^{ 2 }dx } -\int _{ -1 }^{ 1 }{ \dfrac { 2 }{ 1+{ x }^{ 2 } } dx }  \right] $$
    $$\displaystyle =-\left[ { \left. \dfrac { { x }^{ 2 } }{ 3 }  \right]  }_{ -1 }^{ 1 }-{ \left. 2\tan ^{ -1 }{ x }  \right]  }_{ -1 }^{ 1 } \right] $$
    $$\displaystyle =-\left[ \left[ \dfrac { 1 }{ 3 } -\left( -1/3 \right)  \right] -2\left[ \pi /4-\left( -\pi /4 \right)  \right]  \right] $$
    $$\displaystyle =-\left[ \dfrac { 2 }{ 3 } -2\left[ \pi /4+\pi /4 \right]  \right] $$
    $$\displaystyle =\boxed { \pi -\dfrac { 2 }{ 3 }  } $$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now