Self Studies

Application of Integrals Test - 34

Result Self Studies

Application of Integrals Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the curves $$y=|x-2|$$ and $$y=4-|x| is- $$  
    Solution
    From the attached fig., $$ABCD$$ is the region bounded by the curves $$y = \left| x - 2 \right|$$ and $$y = 4 - \left| x \right|$$.
    Since $$ABCD$$ is a rectangle, therefore
    $$ar{\left( ABCD \right)} =$$ area of rectangle $$= AB \times BC$$
    Now,
    $$AB = \sqrt{{\left( -1 - 0 \right)}^{2} + {\left( 4 - 3 \right)}^{2}} = \sqrt{2}$$
    $$BC = \sqrt{{\left( 3 - 0 \right)}^{2} + {\left( 1 - 4 \right)}^{2}} = 3 \sqrt{2}$$
    $$\therefore ar{\left( ABCD \right)} = \sqrt{2} \times 3 \sqrt{2} = 6 \text{ sq. units}$$
    Hence the area of  region bounded by the curves $$y = \left| x - 2 \right|$$ and $$y = 4 - \left| x \right|$$ is $$6$$ units.

  • Question 2
    1 / -0
    The area of the region bounded by $$y=(x-4)^2, y=16-x^2$$ and the x axis,is
    Solution
    $$y_1=x^2+16-8x$$
    $$y_2=16-x^2$$
    $$16-x^2=x^2=16-8x$$
    $$\Rightarrow 2x^2-8x=0$$
    $$x^2-4=0$$
    $$x=0,4$$
    $$\overset { 4 }{ \underset { 0 }{ \int }  } (y_1-y_2)dx$$
    $$\Rightarrow { }{ \underset { 0 }{ \int }  } (2x^2-8x)dx$$
    $$\Rightarrow { \left[ \dfrac { { 2x }^{ 3 } }{ 3 } -{ 4x }^{ 2 } \right]  }_{ 0 }^{ 4 }$$
    $$\left| \dfrac { 128 }{ 3 } -64 \right| =\dfrac { 64 }{ 3 }\\$$
  • Question 3
    1 / -0
    Find area bounded by curves $$\left \{ (x,y):y\geq x^{2}andy=\mid x\mid  \right \}$$
    Solution
    $$y=\mid x\mid$$$$=\left\{ x\quad ;\quad x\ge 0\\ -x\quad ;x<0 \right\} $$
    $$P$$ and $$Q$$ are
    $$x^2=x\\x^2-x=0\\x(x-1)=0\\$$
    $$x=0,1$$
    $$Q=1$$
    similarly
    $$p=-1$$
    $$A=\int _{ 0 }^{ 1 }{ x } -{ x }^{ 2 }dx\\ A={ [\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { { x }^{ 3 } }{ 3 } ] }_{ 0 }^{ 1 }\\ A=\cfrac { 1 }{ 2 } -\cfrac { 1 }{ 3 } \\ A=\cfrac { 1 }{ 3 } $$

  • Question 4
    1 / -0
    The area enclosed between the curves $$y^2 = x$$ and $$y=|x|$$ is
  • Question 5
    1 / -0
    The area enclosed between the curve $$y = |x|^{3}$$ and $$x = y^{3}$$ is
    Solution

  • Question 6
    1 / -0
    Find the area bounded by the curve $$y =  sin\;x$$ with x-axis between  $$x = 0$$ to x = 2$$\pi$$.
    Solution

    Consider the problem

    We have to draw the graph of $$y=sin\;x$$

    Therefore,

    Required area $$=Area\; OABO+Area \;BCDB$$

    $$\begin{array}{l} =\int _{ 0 }^{ \pi  }{ \sin  xdx+\left| { \int _{ \pi  }^{ 2\pi  }{ \sin  xdx }  } \right|  }  \\ ={ \left[ { -\cos  x } \right] _{ 0 } }^{ \pi  }+\left| { { { \left[ { -\cos  x } \right]  }_{ \pi  } }^{ 2\pi  } } \right|  \\ =\left[ { -\cos  \pi +\cos  0 } \right] +\left| { -\cos  2\pi +\cos  \pi  } \right|  \\ =1+1+\left| { \left( { -1-1 } \right)  } \right|  \\ =2+\left| { -2 } \right|  \\ =2+2 \\ =4units \end{array}$$

  • Question 7
    1 / -0
    From a piece of cardboard, in the shape of a trapezium ABCD, and AB$$||$$CD and $$\angle$$BCD$$=90^o$$, quarter circle is removed. Given AB$$=$$BC$$=3.5$$cm and DE$$=2$$cm. Calculate the area of the remaining piece of the cardboard.(Take $$\pi$$ to be $$\dfrac{22}{7}$$)

    Solution
    REF.Image
    EC=BC=3.5 cm
    DC = DE + EC
    = 5.5 cm
    Area of rem. piece = Area of trapezoid - Area of quarter circle

    EC=BC=3.5cm
    Area of rem. piece = Area of trapezoid - Area of quarter circle

  • Question 8
    1 / -0
    The area between the curves y=$$x^{2}$$ and $$y=\frac{2}{1+x^{2}}$$ is-
    Solution

    we have,

    $$y={{x}^{2}}\,\,......\,\,\left( 1 \right)$$

    $$y=\dfrac{2}{{{x}^{2}}+1}\,\,.......\,\,\left( 2 \right)$$

    Taking limit then,

    By equation (1) and (2) to, and get,

    $${{x}^{2}}=\dfrac{2}{{{x}^{2}}+1}$$

    Put x=1 and we get,

    $$ {{\left( 1 \right)}^{2}}=\dfrac{2}{{{\left( 1 \right)}^{2}}+1} $$

    $$ 1=\dfrac{2}{2} $$

    $$ 1=1 $$

    Now, taking’

    $$x=-1$$ and we get,

    $$ {{\left( -1 \right)}^{2}}=\dfrac{2}{{{\left( -1 \right)}^{2}}+1} $$

    $$ 1=1 $$

    Then, the limit of this function of \[1\,\,to\,\,-1\].

    The required area\[=\int_{-1}^{1}{\left( \dfrac{2}{{{x}^{2}}+1}-{{x}^{2}} \right)dx}\]

    $$ =\int_{-1}^{1}{\left( \dfrac{2}{{{x}^{2}}+1}-{{x}^{2}} \right)dx}=2\int_{0}^{1}{\left( \dfrac{2}{{{x}^{2}}+1}-{{x}^{2}} \right)dx} $$

    $$ =2{{\left[ 2{{\tan }^{-1}}x-\dfrac{{{x}^{3}}}{3} \right]}_{0}}^{1} $$

    $$ =2\left[ 2{{\tan }^{-1}}\left( 1 \right)-2{{\tan }^{-1}}0-\dfrac{1-0}{3} \right] $$

    $$ =2\left[ 2\dfrac{\pi }{4}-2\times 0-\dfrac{1}{3} \right] $$

    $$ =\pi -\dfrac{2}{3} $$

    Hence, this is the answer.
  • Question 9
    1 / -0
    The area (in sq. units) of the region $$\left\{ {\left( {x,y} \right):{y^2} \ge 2x\,and\,{x^2} + {y^2} \le 4x,x \ge 0} \right\}$$ is
    Solution

  • Question 10
    1 / -0
    The area of the region $$[(x, y) : x^{2} + y^{2} \leq 1 \leq x + y|$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now