Self Studies

Application of Integrals Test - 36

Result Self Studies

Application of Integrals Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the curve $$y = 2x - {x^2}$$ and the line $$y = x$$ is 
    Solution

  • Question 2
    1 / -0
    Area bounded by the curve $$y = \sin ^ { - 1 } x , y - a x i s$$ and $$y = \cos ^ { - 1 } x$$ is equal to
    Solution

  • Question 3
    1 / -0
    The area bounded by $$|x|=1-y^{2}$$ and $$|x|+|y|=1$$ is
    Solution

  • Question 4
    1 / -0
    Find the area enclosed between $$y=1+\left| x+1 \right| ,y=4$$.
    Solution
    Given $$y=1+\left| x+1 \right| $$
    $$=\begin{cases} -x,\quad \quad x<-1 \\ x+2,\quad \quad x>-1 \end{cases}$$
    Area $$=24-\left[ \int _{ -4 }^{ -1 }{ -x } dx+\int _{ -1 }^{ 2 }{ \left( x+2 \right) dx }  \right] $$
    $$==24-\left[ -\cfrac { 1 }{ 2 } (1-16)+{ \left[ \cfrac { { x }^{ 2 } }{ 2 } +2x \right]  }_{ -1 }^{ 2 } \right] =24-\left[ \cfrac { 15 }{ 2 } +2+4-\cfrac { 1 }{ 2 } +2 \right] $$
    $$=24-\left( 8+7 \right) =24-15=9$$

  • Question 5
    1 / -0
    Area bounded by the curves $$y=x\sin x\ and x-axis$$ between $$x=0\ and x=2\pi$$ is 
    Solution

  • Question 6
    1 / -0
    The area of the figure bounded by the parabola $$(y-2)^2=x-1$$, the tangent to it at the point with the ordinate $$x=3$$, and the x-axis is
    Solution
    Given parabola is $$(y - 2)^2 = x - 1$$
    $$\Rightarrow \dfrac{dy}{dx} = \dfrac{1}{2(y-2)}$$

    When $$y = 3, x=2$$
    $$\therefore \dfrac{dy}{dx} = \dfrac{1}{2}$$.
    Tangent at $$(2,3)$$ is $$y - 3 = \dfrac{1}{2}(x-2) \Rightarrow x-2y + 4 = 0$$

    $$\therefore$$ required area
    $$= \displaystyle \int _0^3 ((y-2)^2 + 1) dy - \int_0^3 (2y-4) dy$$

     $$ = \left| \dfrac{(y - 2)^3}{3} + y\right|_0^3 - |y^2 - 4y|_0^3$$

    $$= \dfrac{1}{3} + 3 + \dfrac{8}{3} - (9 - 12 ) = 9$$ sq. units.

  • Question 7
    1 / -0
    The area bounded by the curve $$y=\cos x$$ and $$y=\sin x$$ between the ordinates $$x=0$$ and $$x=\dfrac {3\pi}{2}$$ is
    Solution
    $$\displaystyle \int_0^{3\pi/2}|\sin x-\cos x|dx----(1)$$
    $$\displaystyle \int_0^{\pi / 4}(\cos x-\sin x)dx +\displaystyle \int_{\pi /4}^{5\pi /4}(\sin x-\cos x)dx$$
    $$\rightarrow \ \displaystyle \int_{5\pi /4}^{3\pi/2}(\cos x-\sin x)dx [\sin x+\cos x]_0^{\pi /4}$$
    $$\rightarrow \ [\cos x-\sin x]_{\pi /4}^{5\pi /4}\rightarrow {\sin x+\cos x}_{5\pi /4}^{3\pi /4}$$
    $$=\sqrt {2}-1+\sqrt {2}+\sqrt {2}+\sqrt {2}-1$$
    $$4\sqrt {2}-2$$

  • Question 8
    1 / -0
    Let $$y=g(x)$$ be the inverse of a bijective mapping $$f:R\rightarrow R\quad f(x)=3{ x }^{ 3 }+2x$$. The area bounded by graph of $$g(x)$$, the axis and the ordinate at $$x=5$$ is
    Solution
    Required Area $$=\displaystyle \int_{0}^{s}{f^{-1}(x)dx}$$
    $$I=\displaystyle \int_{f^{-1}(0)}^{f^{-1}(s)}{f^{-1}(f(t)).f'(t)dt}$$
    put $$x=f(t)$$                   
    $$f(0)=0$$               $$\displaystyle \int_{f^{-1}(0)}^{f^{-1}(s)}{(f'(t)dt}$$
    $$f^{-1}(0)=0$$          $$\displaystyle \int_{0}^{1}{t(9t^2+2)dt}$$
    $$f^{-1}(s)=1$$           $$\displaystyle \int_{0}^{1}{t(9t^3+2t)dt}$$
                                      $$={ \left. \dfrac { 9+4 }{ 4 } +\dfrac { 2t^{ 2 } }{ 2 }  \right]  }_{ 0 }^{ 1 }$$
                                      $$=\dfrac{3}{4}+1=\dfrac{13}{4}\ Square\ Unit$$
  • Question 9
    1 / -0
    The area bounded by the curves $$|x|+|y|\ge1$$ and $$x^2+y^2\le1$$ is 
    Solution
    Required area $$\pi \times 1^2-4\times \dfrac {1}{2}\times 1\times 1$$
    $$= \pi -2$$
    $$\therefore (\pi -2)sq \ unit$$

  • Question 10
    1 / -0
    The area of the figure bounded by the parabola $$x = - 2 y ^ { 2 } \text { and } x = 1 - 3 y ^ { 2 } $$ is ?
    Solution
    $$x =  - 2{y^2} \to \left( i \right)\,\,\& \,\,x = 1 - 3{y^2} \to \left( {ii} \right)$$
    Equating equation (i) & (ii)
    $$\begin{array}{l} -2{ y^{ 2 } }=1-3{ y^{ 2 } } \\ -2{ y^{ 2 } }+3{ y^{ 2 } }=1 \\ { y^{ 2 } }=1 \\ y\pm 1 \end{array}$$
    So, area of region bounded by 
    $$\begin{array}{l} A\Rightarrow 2\int _{ 0 }^{ 1 }{ \left[ { \left( { 1-3{ y^{ 2 } } } \right) -\left( { -2{ y^{ 2 } } } \right)  } \right] dy }  \\ =2\int _{ 0 }^{ 1 }{ \left( { 1-{ y^{ 2 } } } \right) dy }  \\ =2\left[ { y-\frac { { { y^{ 3 } } } }{ 3 }  } \right] _{ 0 }^{ 1 }\Rightarrow 2\left[ { \left( { 1-\frac { 1 }{ 3 }  } \right) -\left( { 0-\frac { 0 }{ 3 }  } \right)  } \right]  \\ =2\left[ { \frac { 1 }{ 1 } -\frac { 1 }{ 3 }  } \right] \Rightarrow 2\left[ { \frac { 2 }{ 3 }  } \right] =\frac { 4 }{ 3 } \, \, sq.\, \, units \end{array}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now