Self Studies

Application of Integrals Test - 38

Result Self Studies

Application of Integrals Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area (in sq units) of the region $$\{ (x,y):{ y }^{ 2 }\ge 2x$$ and $${ x }^{ 2 }+{ y }^{ 2 }\le 4x ,\chi \ge 0, Y\ge 0\}$$ 
    Solution

  • Question 2
    1 / -0
    The area bounded by the curve $$xy^{2}=1$$ and the lines $$x=1$$, $$x=2$$ is
    Solution

  • Question 3
    1 / -0
    The area in square units bounded by the curves $$y = x ^ { 3 } , y = x ^ { 2 }$$ and the ordinates $$x = 1 , x = 2$$ is
    Solution
    $$\int _{ 1 }^{ 2 }{ \left( { x }^{ 3 }{ -x }^{ 2 } \right) dx } \\ ={ \left[ \frac { { x }^{ 4 } }{ 4 } -\frac { { x }^{ 3 } }{ 3 }  \right]  }_{ 1 }^{ 2 }\\ =\left[ 4-\frac { 8 }{ 3 }  \right] -\left[ \frac { 1 }{ 4 } -\frac { 1 }{ 3 }  \right] \\ =\left[ \frac { 4 }{ 3 }  \right] -\left[ -\frac { 1 }{ 12 }  \right] \\ =\frac { 4 }{ 3 } +\frac { 1 }{ 12 } \\ =\frac { 17 }{ 12 } $$

  • Question 4
    1 / -0
    The area bounded by the curves $$y=\sqrt{-x}$$ and $$x=-\sqrt{-y}$$, where $$x,y\le0$$, is equal to
    Solution
    Given the curve
    $$y=-\sqrt{-x}$$ and $$x=-\sqrt{-y}$$
    Now, the area bound by the both curve
    $$=\displaystyle \int_{-1}^{0}{(-x^2+\sqrt{-x})dx}$$
    $$=\displaystyle \int_{-1}^{0}{-x^2 dx}+\displaystyle \int_{-1}^{0}{\sqrt{-x}dx}$$
       change
    $$=\displaystyle \int_{-1}^{0}{\sqrt{x} dx}-\displaystyle \int_{-1}^{0}{x^2 dx}$$
    $$=\left[\dfrac{2}{3}x^{3/2}-\dfrac{x^3}{3}\right]_0^1$$
    $$=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)-(0-0)$$
    $$=\dfrac{1}{3}\ sq.\ unit$$
    Hence, this is the answer.
  • Question 5
    1 / -0
    Tangents are drawn from a point $$P$$ to a parabola $$y^{2}=4ax$$. The area enclosed by the tangents and the corresponding chord of contact is $$4a^{2}$$. Then point $$P$$ satisfies
  • Question 6
    1 / -0
    Let $$T$$ be the triangle with vertices $$\left (0,0\right), \left (0,{c}^{2}\right)\ and \left (c,{c}^{2}\right)$$ and let $$R$$ be the region between $$y=cx$$ and $$y={x}^{2}\ where c>0$$ then 
    Solution

  • Question 7
    1 / -0
    Let $$f(x)=minimum (x+1,\sqrt{1-x}) $$ for all $$x \le 1$$. Then the area bounded by $$y=f(x)$$ and the x-axis is
    Solution

  • Question 8
    1 / -0
    The area of the figure bounded by the curves $$y ^ { 2 } = 2 x + 1$$ and $$x - y - 1 = 0$$ is 
    Solution

  • Question 9
    1 / -0
    Area (in $$sq.$$ unit) of region bounded by $$y=2\cos x,\ y=3\tan x$$ and $$y-$$axis is
    Solution
    Given that,
    $$y=2\cos x, y=3\tan x$$
    $$2\cos x=3\tan x$$
    $$2\cos x=3\dfrac{\sin x}{\cos x}$$
    $$2\cos^2x=3\sin x$$
    $$2(1-\sin^2x)=3\sin x$$
    $$2-2\sin^2x=3\sin x$$
    $$2\sin^2x+3\sin x-2=0$$
    On solving,
    $$x=\dfrac{\pi}{6}$$ and y-axis
    So, $$x=0$$
    then,
    $$\displaystyle\int^{\pi/6}_0(2\cos x-3\tan x)dx$$
    $$=2\displaystyle\int^{\pi/6}_0\cos xdx-3\displaystyle\int^{\pi/6}_0\tan xdx$$
    $$=2[\sin x]^{\pi/6}_0-3[log \sec x]^{\pi/6}_0$$
    $$=2\left[\sin\dfrac{\pi}{6}-\sin\theta\right]-3\left[log\sec\dfrac{\pi}{6}-log\sec 0\right]$$
    $$=2\left[\dfrac{1}{2}-0\right]-3\left[log \dfrac{2}{\sqrt{3}}-log 1\right]$$
    $$=\dfrac{2}{2}-0-3\left[log 2-log\sqrt{3}-0\right]$$
    $$=1-3[log 2-log \sqrt{3}]$$
    $$=1-3log 2+3log \sqrt{3}$$
    $$=1-3log 2+3log (3)^{\dfrac{1}{2}}$$
    $$=1-3log 2+\dfrac{3}{2}log 3$$
    $$=1+\dfrac{3}{2}log 3-3log 2$$.

  • Question 10
    1 / -0
    Let $$f\left( x \right)$$ be a non-negative continuous function such that the area bounded by the curve $$y= f\left( x \right) $$, x-axis and the ordinates $$x=\cfrac { \pi  }{ 4 } $$, $$x=\beta >\cfrac { \pi  }{ 4 } $$ is $$\left( \beta \sin { \beta  } +\cfrac { \pi  }{ 4 } \cos { \beta  } +\sqrt { 2 } \beta -\cfrac { \pi  }{ 2 }  \right) $$. Then $$f\left( \cfrac { \pi  }{ 2 }  \right) $$ is
    Solution
    Given that,
    $$\displaystyle\int^{\beta}_{\pi/4}f(x)dx=\beta \sin\beta +\dfrac{\pi}{4}\cos\beta +\sqrt{2}\beta -\dfrac{\pi}{2}$$
    Differentiating w.r.t x and we get
    $$f(\beta)=\beta \cos\beta +\sin\beta -\dfrac{\pi}{4}\sin\beta +\sqrt{2}-0$$
    $$f\left(\dfrac{\pi}{2}\right)=\left(1-\dfrac{\pi}{4}\right)\sin\dfrac{\pi}{2}+\sqrt{2}$$
    $$=\left(1-\dfrac{\pi}{4}\right)\times 1+\sqrt{2}$$
    $$=1-\dfrac{\pi}{4}+\sqrt{2}$$
    Hence, this is the answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now