Self Studies

Application of Integrals Test - 39

Result Self Studies

Application of Integrals Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of (in sq. units ) of the region described by $$ A={(x,y): x^2+y^2 \leq 1\ and\ y^2 \leq 1-x }$$
    Solution

  • Question 2
    1 / -0
    The area of the region bounded by the curves $$y=|x-1|$$ and $$y=3-|x|$$ is?
    Solution

  • Question 3
    1 / -0
    The area enclosed between the curves $${y^2} = x$$ and $$y = |x|\;is$$ - 
    Solution
    POint of intersection P
    $$y^2=x\\x^2=x\\x=1\quad and\quad 0$$
    Area enclosed $$=\int_0^1{\sqrt x-x}\\ \Rightarrow\cfrac{2}{3}x^{2/3}-\cfrac{x^2}{2}]^1_0\\ \Rightarrow\cfrac{2}{3}-\cfrac{1}{2}\\ \Rightarrow\cfrac{4-3}{6}=\cfrac{1}{6}$$

  • Question 4
    1 / -0
    The area bounded by $$x^2=4ay$$ and $$y=2a$$ is?
    Solution
    REF.Image
    $$x^{2}=4ay, y=2a$$

    $$A= A_{1}+A_{2}$$

    $$=2A_{2}$$

    $$= 2\int_{0}^{2\sqrt{2}a}(2a-\dfrac{x^{2}}{4a})dx$$

    $$= 2[2ax-\dfrac{x^{3}}{4a\times 3}]_{0}^{2\sqrt{2}a}$$

    $$= 2[4\sqrt{2}a^{2}-\dfrac{4a^{2}\sqrt{2}}{3}]$$

    $$= \dfrac{16}{3}\sqrt{2}a^{2}$$

  • Question 5
    1 / -0
    Area of the  region containing all points $$(x, y)$$ satisfying $$0\le y\le \sqrt{4-x^{2}}, y \le x^{2}+x+1$$ and $$y=\left[\sin^{2}\dfrac{\pi}{4}+\cos\dfrac{x}{4}\right]$$ is equal to ( where [.] denotes the greatest integer function ). 
  • Question 6
    1 / -0
    If area bounded by to curves $$y^2 = 4ax$$ and y=mx is $$\dfrac{a^2}{3}$$, then the value of m is 
    Solution
    Given,

    $$y^2=4ax,y=mx$$ curves intersect at $$\left ( 4\dfrac{a}{m^2},\dfrac{a}{m} \right )$$

    Area enclosed is,

    $$A=\displaystyle \int_{0}^{4\frac{a}{m^2}}(\sqrt{4ax}-mx)dx$$

    $$\therefore \displaystyle \int_{0}^{4\frac{a}{m^2}}(\sqrt{4ax}-mx)dx=\dfrac{a^2}{3}$$  .... given

    $$\left[2\sqrt a \ \dfrac{x^{\tfrac 32 }}{\tfrac  32 }- m \dfrac {x^2} 2 \right]^{4\frac{a}{m^2}}_0=\dfrac{a^2}{3}$$

    $$\dfrac {4\sqrt a} 3 {({4\frac{a}{m^2}})^{\tfrac 3 2}}-\dfrac m 2 {(4\frac{a}{m^2})}^2-0-0=\dfrac{a^2}{3}$$

    $$\dfrac{32 a ^2} {3m^3}-\dfrac{8 a ^2} {m^3}=\dfrac{a^2}{3}$$

    $$\dfrac{8}{3}\dfrac{a^2}{m^3}=\dfrac{a^2}{3}$$

    $$m^3=8$$

    $$\therefore m=2$$

  • Question 7
    1 / -0
    The are boundede by the curve $$y=x^{2},y=-x$$ and $$y^{2}=4x-3$$ is $$k$$, them the value of $$9k$$ is
    Solution

  • Question 8
    1 / -0
    If $${\int}_{0}^{1}\left(4x^{3}=f(x)\right)f(x)dx=\dfrac{4}{7}$$, then the area of region bounded by $$y=f(x),x-$$ axis and the line $$x=$$ and $$x=2$$ is
  • Question 9
    1 / -0
    The area bounded by curves $$ 3 x^2 + 5 y= 32$$ and $$ y = |x-2| $$ is
    Solution

  • Question 10
    1 / -0
    The area of the plane region bounded by the curves $$x+{ 2y }^{ 2 }=0$$ and $$x+{ 3y }^{ 2 }=1$$ is equal to 
    Solution
    The given curves are $$x+2y^2=0$$ & $$x+3y^2=1$$
    $$1$$st curve
    $$\Rightarrow x^2+2y^2=0$$
    $$\Rightarrow x^2=-2y^2$$
    $$\therefore y^2=-x/2$$ (parabola)
    $$2nd$$ curve
    $$\Rightarrow x+3y^2=1$$
    $$\Rightarrow 3y^2=1-x$$
    $$y^2=(1-x)/3$$ (parabola)
    So, area between parabolas is required 
    Solving
    $$-\dfrac{x}{2}=\dfrac{(1-x)}{3}$$
    $$\Rightarrow -3x=2-2x$$
    $$\Rightarrow -3x+2x=2$$
    $$\Rightarrow -x=2$$
    $$=x=-2$$
    $$\therefore y=1, -1$$
    $$(-2, -1)$$ & $$(-2, 1)$$ are points of intersection.
    Required area
    $$=2|\displaystyle\int^1_0(-2y^2-1+3y^2)dy|$$
    $$=2|\displaystyle\int ^1_0(y^2-1)dy|=2\left[y-\dfrac{y^3}{3}\right]^1_0$$
    $$=2|\left(\dfrac{1}{3}-1\right)|=2\times 2/3=4/3$$ square units.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now