Self Studies

Application of Integrals Test - 40

Result Self Studies

Application of Integrals Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the figure formed by $$ |x| + |y| = 2$$ is (in sq. units)
    Solution

  • Question 2
    1 / -0
    The area bounded by the curve $$y=\ln (x)$$ and the lines $$y=\ln (3),y=0$$ and $$x=0$$ is equal 
    Solution

  • Question 3
    1 / -0
    The area (in sq.units) of the region described by $$\left\{(x,y):y^{2}\le 2x\ and\ y\ge 4x-1\right\}$$ is 
    Solution

  • Question 4
    1 / -0
    The area bounded by the curves $$y = \log _ { e } x$$ and $$y = \left( \log _ { e } x \right) ^ { 2 }$$ is
    Solution
    $$\begin{array}{l} y=\left( { { { \log   }_{ e } }x } \right) \, \, \, \, \, \, \, ----\left( 1 \right)  \\ y={ \left( { { { \log   }_{ e } }x } \right) ^{ 2 } }\, \, \, \, \, -----\left( 2 \right)  \\ For\, the\, po{ { int } }\, of\, { { int } }er\sec  tion \\ { \left( { { { \log   }_{ e } }x } \right) ^{ 2 } }\, \, =\left( { { { \log   }_{ e } }x } \right)  \\ { \left( { { { \log   }_{ e } }x } \right) ^{ 2 } }\, \, -\left( { { { \log   }_{ e } }x } \right) =0 \\ \left( { { { \log   }_{ e } }x } \right) \left[ { \left( { { { \log   }_{ e } }x } \right) \, -1 } \right] \,  \\ \left( { { { \log   }_{ e } }x } \right) =0\, \, and\, \left( { { { \log   }_{ e } }x } \right) =1 \\ x=1\, \, and\, \, x=e \\ area\, bounded \\ =\left| { \int _{ 1 }^{ e }{ \left\{ { { { \left( { { { \log   }_{ e } }x } \right)  }^{ 2 } }\, -\left( { { { \log   }_{ e } }x } \right)  } \right\} dx }  } \right| \, \,  \\ consider \\ I=\int { \left\{ { { { \left( { { { \log   }_{ e } }x } \right)  }^{ 2 } }\, -\left( { { { \log   }_{ e } }x } \right)  } \right\} dx }  \\ { \log _{ e }  }x=t \\ x={ e^{ t } } \\ dx={ e^{ t.dt } } \\ Now, \\ I=\int { { e^{ t } }\left\{ { { t^{ 2 } }-t } \right\} dt }  \\ ={ e^{ t } }\left\{ { { t^{ 2 } }-t } \right\} -\left\{ { \left( { 2t-1 } \right) { e^{ t } }-2{ e^{ t } } } \right\} \, \, \, \, \left[ { by\, { { int } }ergration\, by\, parts } \right]  \\ ={ e^{ t } }\left[ { { t^{ 2 } }-t-2t+1+2 } \right]  \\ ={ e^{ t } }\left[ { { t^{ 2 } }-3t+3 } \right]  \\ =x\left[ { \log { { \left( x \right)  }^{ 2 } } -3\log  \left( x \right) +3 } \right]  \\ Now, \\ \left| { \int _{ 1 }^{ e }{ \left\{ { { { \left( { { { \log   }_{ e } }x } \right)  }^{ 2 } }\, -\left( { { { \log   }_{ e } }x } \right)  } \right\} dx }  } \right| \, \,  \\ =\left| { \left[ { x\left\{ { loh{ { \left( x \right)  }^{ 2 } } } \right\} -3\log  \left( x \right) +3 } \right] _{ 1 }^{ e } } \right|  \\ =\left| { e\left( { 1-3+3 } \right) -1\left( { 0-0+3 } \right)  } \right|  \\ =\left| { e-3 } \right|  \\ =3-e \end{array}$$
    Hence, the option $$B$$ is the correct answer.
  • Question 5
    1 / -0
    The area common to the parabola $$y=2{ x }^{ 2 }\quad$$ and $$\quad y={ x }^{ 2 }+4$$
    Solution
    Find the P.O.I of the parabolas equate the equations $$y = 2x^2$$ and $$y = x^2 + y$$ we get
    $$2x^2 = x^2 + 4$$
    $$x^2  = 4$$
    $$x  = \pm 2$$
    $$y = 8$$
    $$\therefore $$ POI are $$A(-2, 8) $$ & $$C(2, 8)$$
    $$\therefore$$ the required are ABCD
    $$A = \displaystyle \int_{-2}^2 (y_1  - y_2) dx$$ (where $$y_1 = x^2 + 4 \, \& \, y_2 = 2x^2$$)
    $$= \displaystyle \int_{-2}^2 (x^2 + 4 - 2x^2) dx = \int_{-2}^2 (4 - x^2) dx = \left(4x - \dfrac{x^3}{3} \right)^2_{-2}$$
    $$\left[4(2) - \dfrac{(2)^3}{3} \right] - \left[4(-2) - \dfrac{(-2)^3}{3} \right] = \left[8 - \dfrac{8}{3} \right] - \left[8 + \dfrac{8}{3} \right]$$
    $$= \dfrac{32}{3} $$ sq. units
  • Question 6
    1 / -0
    The area bounded by a the curves y=x(1-/nX) and positive X-axis between $$X={ e }^{ -1 }$$ amd X=e is:-
    Solution

  • Question 7
    1 / -0
    The area bounded by the curves $$y=x(x-3)^{2}$$ and $$y=x$$ is (in $$sq.units$$) is
    Solution

  • Question 8
    1 / -0
    The area bounded by the curve $$y={ x }^{ 2 }$$, X=axis and the ordinates z=1, z=3 is ____________.
  • Question 9
    1 / -0
    The area bounded by the curves $$y=x(x-3)^{2}$$ and $$y=x$$ is (in sq.units) is
    Solution

  • Question 10
    1 / -0
    The area bounded by the curve y =  log x, X-axis and the ordinates x =1, x =2 is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now