Self Studies

Application of Integrals Test - 41

Result Self Studies

Application of Integrals Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area enclosed by the curves $$xy^{2}=a^{2}(a-x)$$ and $$(a-x)y^{2}=a^{2}x$$ is
    Solution

  • Question 2
    1 / -0
    The area bounded by the curved $${ y }^{ 2 }=16x$$  and the line x=4 is  ___________________________.
    Solution

  • Question 3
    1 / -0
    If $$A_{m}$$ represents the area bounded by the curve $$y=\ln x^{m}$$., the $$x-$$axis and the lines $$x=1$$ and $$x=2$$, then $$A_{m}+m\ A_{m-1}$$ is
    Solution

  • Question 4
    1 / -0
    The area of the region bounded by the curve $$y=x^{2}-3x$$ with $$y \le 0$$ is
    Solution
    REF.Image
    when x=0 $$\Rightarrow $$ y0
    when y=0 $$\Rightarrow $$ x(x-3)=0
    x=0 and x=3
    $$y=x^{2}-3x$$
    $$\frac{dy}{dx}=2x-3\Rightarrow x=1.5$$
    min value at x=1.5
    $$y=\frac{3}{2}(\frac{3}{2}-3)$$
    $$=\frac{3}{2}(\frac{-3}{2})=\frac{-9}{4}=-2.25$$
    Area of shaded region = $$\int y.dx$$
    $$=\int_{0}^{3}(x^{2}-3x)dx$$
    $$=(\frac{x^{3}}{3}-\frac{3x^{2}}{2})^{3}_{0}$$
    $$=\frac{3^{3}}{3}-3\times \frac{3^{2}}{2}=9-\frac{9\times 3}{2}=-4.5$$
    considering magnitude = 4.5

  • Question 5
    1 / -0
    If a curve $$y = a \sqrt { x } +$$ bx passes through the point $$( 1,2 )$$ and the area bounded by the curve, line $$x = 4$$ and $$x$$ axis is $$8$$ square units, then 
    Solution

  • Question 6
    1 / -0
    The area bounded by the circle $$x^{2}+y^{2}=8$$, the parabola $$x^{2}=2y$$ and the line $$y=x$$ in first quadrant is $$\dfrac{2}{3}+k\pi$$, where $$k=$$
  • Question 7
    1 / -0
    The area enclosed between the curve $$y=\log_{e}\left(x+e\right)$$ and the coordinate axes is
    Solution
    A]$$ A=\int_{1-e}^{0} ln(x+e)dx$$
    $$=\int_{1-e}^{0} x^{0} ln  (x+e)dx$$
    = $$(x ln(x+e))-\int_{1-e}^{0}\frac{x}{x+e}dx$$
    = $$-\int_{1-e}^{0}\frac{x+e-e}{x+e}dx$$
    $$=\int_{1-e}^{0}(\frac{e}{x+e})dx$$
    $$ =[e ln(x+e)-x]_{1-e}^{0}=1$$

  • Question 8
    1 / -0
    The area of the region formed by $${ x }^{ 2 }+{ y }^{ 2 }-6x-4y+12\le 0,y\le x\quad and\quad x\quad \le \quad \dfrac { 5 }{ 2 } is$$
    Solution

  • Question 9
    1 / -0
    Area bounded by $$y=2x^{2}$$ and $$y=\dfrac{4}{(1+x^{2})}$$ will be (in sq units)
    Solution

    $$\begin{array}{l} Po{ { int } }\, of\, intersection\, : \\ 2{ x^{ 2 } }=\dfrac { 4 }{ { 1+{ x^{ 2 } } } }  \\ \Rightarrow { x^{ 4 } }+{ x^{ 2 } }-2=0 \\ \Rightarrow { x^{ 4 } }+2{ x^{ 2 } }-{ x^{ 2 } }-2=0 \\ \Rightarrow \left( { { x^{ 2 } }-1 } \right) \left( { { x^{ 2 } }+2 } \right) =0 \\ Then \\ Area\, bounded\, by\, y=2{ x^{ 2 } }\, and\, y=\dfrac { 4 }{ { 1+{ x^{ 2 } } } }  \\ 2\int  _{ 0 }^{ 1 }{ \left( { \dfrac { 4 }{ { 1+{ x^{ 2 } } } } -2{ x^{ 2 } } } \right)  }dx=2\left[ { 4{ { \tan   }^{ -1 } }x-\dfrac { { 2{ x^{ 3 } } } }{ 3 }  } \right] _{ 0 }^{ 1 } \\ =2\left[ { 4\times \dfrac { \pi  }{ 4 } -\dfrac { 2 }{ 3 }  } \right]  \\ =2\left[ { \pi -\dfrac { 2 }{ 3 }  } \right] =2\pi -\dfrac { 4 }{ 3 }  \\ Hence,\, option\, \, \, B\, \, is\, the\, correct\, answer. \end{array}$$

  • Question 10
    1 / -0
    $$Letf(x)={ sin }^{ -1 }(sin\quad x)+{ cos }^{ -1 }(\quad cos\quad x),\quad g(x)=mx\quad and\quad h(x)=x\quad $$ are three functions. Now g(x) is divided area between f(x),x=$$\pi $$ and y=0 into two equal parts.
    The area bounded by the curve y=f(x), x=$$\pi $$ and y=0 is:
    Solution
    Given,

    $$f(x)=\sin^{-1}\sin x+\cos^{-1}\cos x=x+x=2x$$

    $$x=\pi$$

    $$y=0$$

    The above 3 forms a right angled triagle, with center as one vertex.

    $$Area=\dfrac{1}{2} \times \pi times 2\pi$$

    $$=\pi ^2sq.units$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now