Self Studies

Application of Integrals Test - 43

Result Self Studies

Application of Integrals Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area (in sq. units) in the  first quadrant bounded by the parabola, $$y = x^2 + 1$$, the tangent to it at the point $$(2, 5)$$ and the coordinate axes is:-
    Solution

  • Question 2
    1 / -0
    The area of the region bounded by $$y=\left | x-1 \right | and \,\,y=1 $$ is
    Solution

  • Question 3
    1 / -0
    The area of the region
    $$A=[(x,y):0\le y\le x|x|+1$$ and $$-1\le x\le 1]$$ in sq . units is :
    Solution
    The graph is as  follows:
    $$\displaystyle \int_{-1}^0(-x^2+1)dx+\displaystyle \int_0^1(x^2+1)dx=2$$

  • Question 4
    1 / -0
    The slope of the tangent to the curve y =f(x) at a point (x, Y) is 2x + 1 and the curve passes through (1, 2) The area of the region bounded by the curve, the x-axis and the line x= 1 is - 
    Solution

  • Question 5
    1 / -0
    The area (in sq. units) of the region bounded by the parabola,  $$y = x ^ { 2 } + 2$$  and the lines, $$y = x + 1 , x = 0$$  and  $$x = 3 ,$$  is :
    Solution
    Req. area  $$= \int _ { 0 } ^ { 3 } \left( x ^ { 2 } + 2 \right) d x - \dfrac { 1 } { 2 } \cdot 5.3 = 9 + 6 - \dfrac { 15 } { 2 } = \dfrac { 15 } { 2 }$$

  • Question 6
    1 / -0
    The area (in sq. units) of the region  $$\{ { x },{ y }):{ y }^{ { 2 } }\geq 2{ x }$$  and  $$x ^ { 2 } + y ^ { 2 } \leq 4 x , x \geq 0 , y \geq 0 \}$$  is :
    Solution

  • Question 7
    1 / -0
    The area of the region  $$\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 1 \leq x + y \right\}$$  is
    Solution

  • Question 8
    1 / -0
    The area of the region bounded by the parabola y = $$x^2$$ 3x with y 0 is
    Solution

  • Question 9
    1 / -0
    The area of the quadrilateral formed by the tangents at the endpoints of the latus recta to the ellipse, $$\dfrac{x^{2}}{9}+\dfrac{y^{2}}{5}=1$$ is 
    Solution
    Given equation of ellipse is
    $$\dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{5}=1$$      ......$$(1)$$
    $$\therefore {a}^{2}=9,{b}^{2}=5$$
    $$\Rightarrow a=3,b=\sqrt{5}$$
    Now, $$e=\sqrt{1-\dfrac{{b}^{2}}{{a}^{2}}}=\sqrt{1-\dfrac{5}{9}}=\dfrac{2}{3}$$
    Foci$$=\left(\pm ae,0\right)=\left(\pm 2,0\right)$$
    and $$\dfrac{{b}^{2}}{a}=\dfrac{5}{3}$$
    $$\therefore$$ Extremities of one of latus rectum are $$\left(2,\dfrac{5}{3}\right)$$ and $$\left(2,\dfrac{-5}{3}\right)$$
    $$\therefore$$ Equation of tangent at $$\left(2,\dfrac{5}{3}\right)$$ is
    $$\dfrac{x\left(2\right)}{9}+\dfrac{y\left(\dfrac{5}{3}\right)}{5}=1$$
    or $$2x+3y=9$$        .......$$(2)$$
    Eqn$$(2)$$ intersects $$X$$ and $$Y$$ axes at $$\left(\dfrac{9}{2},0\right)$$ and $$\left(0,3\right)$$ respectively.
    $$\therefore$$ Area of quadrilateral $$4\times$$Area of $$\triangle{POQ}$$
    $$=4\times\dfrac{1}{2}\times\dfrac{9}{2}\times 3=27$$sq.units.

  • Question 10
    1 / -0
    The area bounded by the curves $$x+2|y|=1$$ and $$x=0$$ is?
    Solution
    $$x+2\left| y \right| =1$$ and $$x=0$$
    $$y=+ve$$   $$x+2y=1$$
    $$y=-ve$$    $$x-2y=1$$
    Area of triangle $$=\cfrac{1}{2}\times base\times height\\=\cfrac{1}{2}\times 1\times 1\\=\cfrac{1}{2}\text{ }unit$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now