Self Studies

Application of Integrals Test - 44

Result Self Studies

Application of Integrals Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by curve $$y=x^{2}-1$$ and tangents to it at $$(2,3)$$ and $$y-$$axis is
    Solution
    $$x-axis:(-1,0)$$

    Area $$=\int_{-1}^{0}(x^2-1)dx$$

    $$=\left [ \dfrac{x^3}{3}-x \right ]_{-1}^0$$

    $$=\left [ \dfrac{-1}{3}-(-1) \right ]-[0]$$

    $$=-\dfrac{1}{3}+1$$

    $$=\dfrac{2}{3}$$ sq. units
  • Question 2
    1 / -0
    Area included between  $${ y }=\dfrac { { x }^{ { 2 } } }{ 4{ a } } $$  and  $$y = \dfrac { 8 a ^ { 3 } } { x ^ { 2 } + 4 a ^ { 2 } }$$  is
    Solution

  • Question 3
    1 / -0
    The area of the figure formed by $$a|x|+b|y|+c=0$$, is
    Solution

  • Question 4
    1 / -0
    The area of the region bounded by the curves  $$y = \sin x$$  and  $$y = \cos x ,$$  and lying between the lines  $$x = \dfrac { \pi } { 4 }$$  and  $$x = \dfrac { 5 \pi } { 4 } ,$$  is
    Solution

  • Question 5
    1 / -0
    Find the area of bounded by $$y=\sin x $$ from $$x=\dfrac{\pi}{4} $$ to $$x=\dfrac{\pi}{2}$$
    Solution
    The area bounded is given as $$\displaystyle \int _{\pi/4}^{\pi/2}\sin xdx\\\left.-\cos x \right|_{\pi/4}^{\pi/2}\\-\cos \dfrac {\pi}2+\cos \dfrac{\pi}4\\\dfrac{\sqrt 2-1}{\sqrt2}$$
  • Question 6
    1 / -0
    The area of the region by curves $$y=x\log x$$ and $$y=2x-2x^{2}=$$
    Solution

  • Question 7
    1 / -0
    The area bounded by x-axis the curve $$y=f(x)$$ and the lines $$x =1,x=b$$ equal to $$\left( \sqrt { \left( { b }^{ 2 }+1 \right)  } -\sqrt { 2 }  \right) for\quad all\quad b>1,then\quad f(x)$$
    Solution

  • Question 8
    1 / -0
    The area bounded by the curve $$y={ e }^{ x }$$ and the lines y = |x - 1|, x = 2 is given by :
    Solution
    Given,

    $$y=e^x,y=|x-1|,x=2$$

    $$\rightarrow e^x=|x-1|$$

    $$\rightarrow e^x-(1-x)=0$$

    intervals:

    $$|x-1|=0\Rightarrow x=1$$

    $$x=2$$

    Area is given by,

    $$A=\int_{0}^{1}(e^x-(1-x))dx+\int_{1}^{2}(e^x-(1-x))dx$$

    $$=\int_{0}^{1}(e^x+x-1)dx+\int_{1}^{2}(e^x+x-1)dx$$

    $$=\left [ e^x+\dfrac{x^2}{2}-x \right ]_0^1+\left [ e^x+\dfrac{x^2}{2}-x \right ]_1^2$$

    $$=e+\dfrac{1}{2}-1+(e^2-2+2)-\left ( e-\dfrac{1}{2}+1 \right )$$

    $$=e^2-2$$
  • Question 9
    1 / -0
    Area bounded by the curve $$y^2(2a-x)=x^3$$ and the line $$x=2a$$, is
    Solution
    Given,

    $$y^2(2a-x)=x^3$$

    $$y=\sqrt{\dfrac{x^3}{2a-x}}$$

    let, $$x=2a\sin ^2\theta $$

    $$dx=4a\sin \theta \cos \theta d\theta $$

    $$\Rightarrow A =\int_{0}^{2a}\sqrt{\dfrac{x^3}{2a-x}}dx$$

    $$A=\int_{0}^{\tfrac{\pi }{2}}\sqrt{\dfrac{8a^3\sin ^6\theta }{2a\cos ^2\theta }}4a\sin \theta \cos \theta d\theta $$

    $$=8a^2\int_{0}^{\tfrac{\pi }{2}}\sin ^4\theta d\theta $$

    $$=8a^2\int_{0}^{\tfrac{\pi }{2}}\sin ^2\theta (1-\cos ^2\theta )$$

    $$=8a^2\int_{0}^{\tfrac{\pi }{2}}\left ( \dfrac{1-\cos 2\theta }{2} \right )-\dfrac{1}{4}\sin ^22\theta d\theta $$

    $$=8a^2\left [ \dfrac{\pi }{4}-0-\dfrac{1}{4}\left ( \dfrac{\pi }{4}-0 \right ) \right ]$$

    $$=8a^2\left [\dfrac{\pi }{4}-\dfrac{\pi }{16}  \right ]=\dfrac{3}{2}\pi a^2$$

  • Question 10
    1 / -0
    Area of the region bounded by $$y=\sin^{-1}{\left| \sin{x}\right|}$$ and $$y=-\cos^{-1}{\left| \cos{x}\right|}$$ in the interval $$[0,2\pi]$$ is equal to 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now