Self Studies

Application of Integrals Test - 45

Result Self Studies

Application of Integrals Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by the circles $$x^{2} + y^{2} = r^{2}, r = 1, 2$$ and the rays given by $$2x^{2} - 3xy - 2y^{2} = 0, y > 0$$ is
    Solution

  • Question 2
    1 / -0
    The area bounding by $$y = 2 - |2 - x|$$ and y = $$\frac { 3 }{ |x| } $$ is :
    Solution

  • Question 3
    1 / -0
    The area enclosed between the curves $$y=ax^2$$ and  $$x=ay^2(a>0)$$ is $$1$$ sq.unit, then the value of $$a$$ is
    Solution

  • Question 4
    1 / -0
    The area inside the parabola $$5x^2-y=0$$ but outside the parabola $$2x^2-y+9=0$$, is
    Solution
    From given, we have,

    $$5x^2-y=0$$

    $$2x^2-y+9=0$$

    we have boundaries,

    $$5x^2=2x^2+9$$

    $$3x^2=9$$

    $$x=\pm \sqrt 3$$

    $$A=\int _{-\sqrt{3}}^{\sqrt{3}}5x^2-\left(2x^2+9\:\right)$$

    $$\int _{-\sqrt{3}}^{\sqrt{3}}5x^2-\left(2x^2+9\:\right)$$

    $$=\int _{-\sqrt{3}}^{\sqrt{3}}3x^2dx-\int _{-\sqrt{3}}^{\sqrt{3}}9dx$$

    $$=6\sqrt{3}-18\sqrt{3}$$

    $$=-12\sqrt{3}$$

    $$\therefore Area =|-12\sqrt{3}|=12\sqrt{3}$$
  • Question 5
    1 / -0
    Area bounded by the curve $$y= sin^{-1}x, y-axis$$ and $$y = cos^{-1}x$$ is equal to 
    Solution
    Given,

    $$y=\sin ^{-1}x,y=\cos ^{-1}x,y-axis$$

    $$\Rightarrow \sin y=x, \cos y=x$$

    $$\Rightarrow \sin y=\cos y \Rightarrow \tan y=1$$

    $$\therefore y=\tan ^{-1}1=\dfrac{\pi }{4}$$

    $$Area=\int _0^{\frac{\pi }{4}}\cos \left(y\right)-\sin \left(y\right)dy$$

    $$=\int _0^{\frac{\pi }{4}}\cos \left(y\right)dy-\int _0^{\frac{\pi }{4}}\sin \left(y\right)dy$$

    $$=\dfrac{1}{\sqrt{2}}-\left(-\dfrac{1}{\sqrt{2}}+1\right)$$

    $$=\sqrt{2}-1$$
  • Question 6
    1 / -0
    The area is bounded by $$x+x_1, y=y_1$$ and $$y=-(x+1)^2$$. Where $$x_1, y_1$$ are the values of $$x, y$$ satisfying the equation $$sin^{-1} x +sin^{-1} y = -\pi$$ will be (nearer to origin)
    Solution
    ( Wrong question, $$x=x$$, instead of $$x+x_{1}$$ )

    Given that:
    $$x =x_{1} \\$$
    $$y =y_{1} \\$$
    $$y =-(x+1)^{2} \\$$
    $$\text { & } x_{1}, y_{1}  \text { satisfy } \sin ^{-1} x+\sin ^{-1} y=z$$

    We know:
    $$-\frac{z}{2} \leq \sin ^{-1} x \leq \frac{z}{2}$$
    $$\frac{-z}{2} \leq \sin ^{-1} y \leq \frac{z}{2}$$

    $$\therefore \quad-z \leq \sin ^{-1} x+\sin ^{-1} y \leq z \\$$
    $$\text { So, for } \\$$
    $$\qquad \sin ^{-1} x+\sin ^{-1} y=-z \\$$
    $$\Rightarrow \sin ^{-1} x=-\frac{\pi}{2} \text { & } \sin ^{-1} y=-z / 2 \\$$
    $$x =-1 \text { and } y=-1 \\$$

    $$\text { area required } =1-|\int_{1}^{0}-(x+1)^{2} d x \mid \\$$
    $$=1-|\int_{1}^{0}\left(x^{2}+1+2 x\right) d x|$$

    $$=1- |\frac{-\left.\left(x^{3}+x+x^{2}\right)\right|_{-1} ^{0}}{3}\\$$
    $$= 1-|\left(\frac{-1}{3}-1+1\right)| \\$$
    $$=1-\frac{1}{3} \\$$
    $$=2 / 3 sq \text { . Units }$$

  • Question 7
    1 / -0
    The area of the region bounded by x = 0, y = 0, x = 2, y = 2, $$y\le { e }^{ x }$$ and $$y\ge \ell n$$ x, is
    Solution

  • Question 8
    1 / -0
    The area of the figure bounded by the curves $$y=\ln nx $$ & $${(\ln nx)}^{2}$$ is 
    Solution

  • Question 9
    1 / -0
    The area of the triangle formed by the lines joining the vertex of the parabola $$x^2 = 12y$$ to the ends of its latus rectum is-
    Solution
    Given,

    $$x^2=12y$$

    $$\Rightarrow 4a=12$$

    $$\therefore a=3$$

    at $$y=3,x^2=12(3)=36$$

    $$\therefore x=\pm 6$$

    Therefore the coordinates are,

    $$A(-6,3),O(0,0),B(6,3)$$

    Area of $$\triangle OAB=\dfrac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|$$

    $$=\dfrac{1}{2}|0(3-3)+(-6)(3-0)+6(0-3)|$$

    $$=\dfrac{1}{2}|-36|$$

    $$=18sq.units$$
  • Question 10
    1 / -0
    The area bounded by curves $$y=\left|x\right|-1$$ and $$y=-\left|x\right|+1$$ is 
    Solution
    First we form a table for different values of $$x$$ and $$y$$ for both equations as shown .
    Here length of $$AC=2$$ units and distance(height) between vertices $$D$$ and line $$AC=1$$units and between vertices $$B$$ and line $$AC=1$$unit
    $$\because$$Area of triangle$$=\dfrac{1}{2}\times b\times h$$
    $$\therefore\,$$Area of $$ABCD=2\times\,Area\,of\,\triangle{ABC}$$
    $$=2\times\dfrac{1}{2}\times 2\times 1=2$$sq.units.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now