Self Studies

Application of Integrals Test - 47

Result Self Studies

Application of Integrals Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$S(\alpha) = \{ (x, y) : y^2 \le x, 0 \le x \le \alpha\}$$ and $$A(\alpha)$$ is area of the region $$S(\alpha)$$. If for a $$\lambda , 0 < \lambda < 4, A(\lambda) : A(4) = 2 : 5$$, then $$\lambda$$ equals
    Solution
    $$\displaystyle S(\alpha) =\{(x, y) : y^2 \le x, 0 \le x \le \alpha\}$$
    $$\displaystyle A(\alpha)= 2 \int^{\alpha}_{0} \sqrt{x}dx = 2\alpha^{\frac{3}{2}}$$
    $$A(4) = 2 \times 4^{3/2} = 16$$
    $$A(\lambda) = 2\times \lambda^{3/2}$$
    $$\dfrac{A(\lambda)}{A(4)} = \dfrac{2}{5} \Rightarrow \lambda  = 4. \left(\dfrac{4}{25}\right)^{1/3}$$
  • Question 2
    1 / -0
    If the area (in sq. units) bounded by the parabola $$y^{2} = 4\lambda x$$ and the line $$y = \lambda x, \lambda > 0$$, is $$\dfrac {1}{9}$$, then $$\lambda$$ is equal to
    Solution
    $$Area = \dfrac {1}{9} = \int_{0}^{\dfrac {4}{\lambda}}(\sqrt {4\lambda x} - \lambda x)dx$$
    $$\Rightarrow \lambda = 24$$.

  • Question 3
    1 / -0
    The area (in sq. units) of the region bounded by the curves $$y={2}^{x}$$ and $$y=\left| x+1 \right| $$, in the first quadrant is:
    Solution
    Required Area
    $$\int _{ 0 }^{ 1 }{ \left( \left( x+1 \right) -{ 2 }^{ x } \right)  } dx={ \left( \cfrac { { x }^{ 2 } }{ 2 } +x-\cfrac { { 2 }^{ x } }{ \ln { 2 }  }  \right)  }_{ 0 }^{ 1 }=\left( \cfrac { 1 }{ 2 } +1-\cfrac { { 2 }^{  } }{ \ln { 2 }  }  \right) -\left( 0+0-\cfrac { 1 }{ \ln { 2 }  }  \right) =\cfrac { 3 }{ 2 } -\cfrac { 1 }{ \ln { 2 }  } $$

  • Question 4
    1 / -0
    Area of the region bounded by $$y^2\leq 4x, x+y\leq 1, x\geq 0, y\geq 0$$ is $$a\sqrt{2}+b$$, then value of $$a-b$$ is?
    Solution
    Let P be the point common to $$x+y=1$$ & $$y^2=4x$$
    So $$y^2=4(1-y\Rightarrow y^2+4y-4=0$$
    $$\Rightarrow y=\dfrac{-4\pm \sqrt{16+16}}{2}$$
    $$\Rightarrow =-2+2\sqrt{2}$$
    Hence $$P(3, -2\sqrt{2}, -2+2\sqrt{2})$$
    Hence started area $$=$$ Area of region (OPN)$$+$$ Area of ($$\Delta$$OPQ)
    $$=\displaystyle\int^{3-2\sqrt{2}}_02\sqrt{x}dx+\dfrac{1}{2}[-1-(3-2\sqrt{2})]^2$$
    $$=\dfrac{2}{3}\cdot 2(\sqrt{2}-1)(3-2\sqrt{2})+\dfrac{1}{2}[2(\sqrt{2}-1)]^2$$
    $$=\dfrac{4}{3}\left\{-7+5\sqrt{2}\right\}+2(3-2\sqrt{2})=\left(\dfrac{20}{3}-4\right)\sqrt{2}+6-\dfrac{28}{3}=\dfrac{8}{3}\sqrt{2}-\dfrac{10}{3}$$
    Hence $$a=\dfrac{8}{3}, b=\dfrac{-10}{3}$$
    So $$a-b=6$$.

  • Question 5
    1 / -0
    If the area enclosed by the curves $${ y }^{ 2 }=4\lambda x$$ and $$y=\lambda x$$ is $$\cfrac { 1 }{ 9 } $$ square units then value of $$\lambda$$ is
    Solution
    $${ y }^{ 2 }=4\lambda x\quad \quad ;y=\lambda x$$
    If $$\lambda> 0$$ then
    Hence $$\int _{ 0 }^{ 4/\lambda  }{ \left( 2\sqrt { \lambda  } \sqrt { x } -\lambda x \right)  } dx=\cfrac { 1 }{ 9 } $$
    $${ \left( \cfrac { 2\sqrt { \lambda  } { x }^{ 3/2 } }{ 3/2 } -\cfrac { \lambda { x }^{ 2 } }{ 2 }  \right)  }^{ \cfrac { 4 }{ \lambda  }  }=\cfrac { 1 }{ 9 } \Rightarrow \cfrac { 4 }{ 3 } \sqrt { \lambda  } \cfrac { 8 }{ { \lambda  }^{ 3/2 } } -\lambda \cfrac { 8 }{ { \lambda  }^{ 2 } } =\cfrac { 1 }{ 9 } \Rightarrow \cfrac { 32 }{ 3\lambda  } =\cfrac { 1 }{ 9 } \Rightarrow \lambda =24$$

  • Question 6
    1 / -0
    The area bounded by the line $$y=x$$, x-axis and ordinates $$x=-1$$ and $$x=2$$ is?
  • Question 7
    1 / -0
    The area bounded by curve $$y=\sin { 2x } \left( x=0\quad to\quad x=\pi  \right) $$ and X-axis is ______
    Solution

    As the crest and trugh are same we can write

    $$A=2\int _{ 0 }^{ \pi /2 }{ \sin { 2x }  } dx$$

    $$=2{ \left[ \cfrac { -\cos { 2x }  }{ 2 }  \right]  }_{ 0 }^{ \pi /2 }$$

    $$=(1+1)$$

    $$ A=2$$

  • Question 8
    1 / -0
    Area of the region bounded by the curve $$y = \cos x$$ between $$x = 0$$ and $$x = \pi$$ is
    Solution
    Required area enclosed by the curve $$y = \cos x, x = 0$$ and $$x = \pi$$
    $$A = \int_{0}^{\pi/2} \cos x dx + \left |\int_{\pi/2}^{\pi} \cos x dx\right |$$
    $$=[sinx]_0^{\pi/2}+[sinx]_{\pi/2}^{\pi}$$
    $$= \left [\sin \dfrac {\pi}{2} - \sin 0\right ] + \left |\sin \dfrac {\pi}{2} - \sin \pi \right |$$
    $$= 1 + 1 = 2\ sq\ units$$.

  • Question 9
    1 / -0
    The area bounded by the curves $$y = -x^2 + 3$$ and $$y = 0$$
    Solution
    $$\textbf{Step -1: Finding the points of intersection.}$$
                    $$\text{The two curves are }y=-x^2+3\text{ and }y=0$$
                    $$\text{Substituting }y=0\text{ in }y=-x^2+3$$
                    $$\Rightarrow 0=-x^2+3$$
                    $$\Rightarrow x^2=3$$
                    $$\Rightarrow x=\pm\sqrt3$$
                    $$\text{The points of intersection are }(-\sqrt3,0)\text{ and }(\sqrt3,0)$$
    $$\textbf{Step -2: Finding the area between the curves.}$$
                   $$\text{Area between the curves}=\int_{-\sqrt3}^{\sqrt3}(-x^2+3)dx$$
                                                                  $$=2\times\int_0^{\sqrt3}(-x^2+3)dx$$
                                                                  $$=2\times[\dfrac{-x^3}{3}+3x]_0^{\sqrt3}$$
                                                                  $$= 2[\dfrac{-3\sqrt3}{3}+3\sqrt3]$$
                                                                  $$=4\sqrt3\text{ sq. units}$$
    $$\textbf{Hence , the area bounded by the curves }\mathbf{y=-x^2+3}\textbf{ and }\mathbf{y=0}\textbf{ is }\mathbf{4\sqrt3}\textbf{ sq. units.}$$
  • Question 10
    1 / -0
    The area bounded by $$y = \sin^2 x , x = \dfrac{\pi}{2} $$ and $$x = \pi$$ is 
    Solution
    Required area $$= \displaystyle \int_{\frac{\pi}{2}}^{\pi} \sin^2 x dx$$

    $$= \displaystyle \int^{\pi}_{\tfrac{\pi}{2}} \left[\dfrac{1 - \cos 2x}{2}\right] dx$$

    $$= \dfrac{1}{2}  \displaystyle \int^{\pi}_{\tfrac{\pi}{2}} (1 - \cos 2x) dx$$

    $$= \dfrac{1}{2} \left[x - \dfrac{\sin 2x}{2} \right]_{\tfrac{\pi}{2}}^{\pi}$$

    $$= \dfrac{1}{2} \left[(\pi - 0) - \left(\dfrac{\pi}{2} - 0\right) \right]$$

    $$= \dfrac{1}{2} \left[\dfrac{\pi}{2} \right] = \dfrac{\pi}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now