Self Studies

Application of Integrals Test - 48

Result Self Studies

Application of Integrals Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by the curve $$y=2x-x^2$$ and the line $$y=x$$ is ________ square units.
    Solution
    We note that the region bounded by these curves is in the region $$x \in [0,1 ]$$. In this region, the curve $$y = x$$ lies below the curve $$y = 2x-x^2$$
    So, to calculate the area of said region, we evaluatie the following integral:
    $$\int_0^1 2x-x^2 - x dx $$
    $$= \int_0^1 x-x^2 dx $$
    $$= [\frac{x^2}{2} - \frac{x^3}{3}]_{x=0}^{x=1}$$
    $$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$
  • Question 2
    1 / -0
    The area bounded by the curve $$ y =x^2 +2x +1 $$ and tangent at $$ ( 1 , 4) $$ and y -axis and 
    Solution

  • Question 3
    1 / -0
    If $$ A_n $$ is the area bounded by $$ y = ( 1 -x^2)^n $$ and coordinates axes , $$ n \epsilon N $$, then 
    Solution

  • Question 4
    1 / -0
    The area enclosed between the curves $$y=log_{e}(x+e)\, , \,x=log_{e}\left ( \dfrac{1}{y} \right ) $$ and the $$x-axis$$ is
    Solution
    $$ y=log_{e}(x+e)\, , \, x=log_{e}\left ( \dfrac{1}{y} \right ) \Rightarrow y=e^{-x} $$

    for $$y=log_{e}(x+e)$$ shift the graph os $$log_{e}x\, , e$$ units left hand side.

    Required area = $$ \displaystyle \int_{1-e}^{0}log_e(x+e)dx\,+ \displaystyle \int_{0}^{\infty }e^{-x}dx $$

    $$ = |xlog_{e}(x+e)|_{1-e}^{0}-\displaystyle \int_{1-e}^{0}\dfrac{x}{x+e}dx-|e^{x}|_{0}^{\infty } $$

    $$ =\displaystyle \int_{0}^{1-e}\left ( 1-\dfrac{e}{x+e} \right )dx-e^{-\infty}+e^{0} $$

    $$ = |x-elog(x+e)|_{0}^{1-e}-0+1 $$

    $$=1-e +e\, loge+1 = 2sq.units $$

  • Question 5
    1 / -0
    If $$\displaystyle \left ( \alpha ^2,\alpha  - 2 \right )$$ be a point interior to the region of the parabola $$\displaystyle y^2 = 2x$$ bounded by the chord joining the points $$\displaystyle \left ( 2,2 \right ) and \left ( 8,-4 \right )$$ then $$\alpha$$ belongs to the interval
    Solution

  • Question 6
    1 / -0
    The area of the region enclosed by the curves $$y=x\log x$$ and $$y=2x-2x^2$$ is
    Solution
    Curve taking : $$y = x \log_ex$$
    Clearly, $$x > 0$$,
    For $$0 < x < 1, x \log_ex < 0$$, and for $$x > 1, x \log_ex > 0$$
    Also $$x \log_ex = 0 \Rightarrow x = 1$$.
    Further, $$\dfrac{dy}{dx} = 0 \Rightarrow 1 + \log_e x = 0 \Rightarrow x = 1/e$$, which is a point of minima.
    Required area
    $$= \displaystyle \int_0^1 (2x - 2x^2)dx - \int_0^1 x \log x \  dx$$

    $$= \left[x^2 - \dfrac{2x^3}{3}\right]_0^1 - \left[\dfrac{x^2}{2} \log x - \dfrac{x^2}{4}\right]_0^1$$

    $$= \left( 1 - \dfrac{2}{3} \right) - \left[ 0 - \dfrac{1}{4} - \dfrac{1}{2} \underset{x \to 0}{\lim} x^2 \log x\right] = \dfrac{1}{3} + \dfrac{1}{4} = \dfrac{7}{12}$$.

  • Question 7
    1 / -0
    Area of the region bounded by the curve $$ y =e^x, y=e^{-x} $$ and the straight line x= 1 given by
    Solution

  • Question 8
    1 / -0
    The area bounded by the curve $$ y = (x) $$ the x-axis and the ordinate $$x= 1$$ and $$x = b$$ is $$(b- 1)$$ $$cos ( 3b + 4)$$, then $$f(x)$$ is given by 
    Solution

  • Question 9
    1 / -0
    The area of the closed figure bounded by $$y=\dfrac{x^{2}}{2}-2x+2$$ and the tangents to it at $$(1,\dfrac{1}{2}) $$ and $$(4,2)$$ is  
    Solution
    $$ y= \dfrac{x^{2}}{2} -2x +2 = \dfrac{(x-2)^2}{2}, $$

    $$ \dfrac{dy}{dx} = x-2 \, , x-2 \,\, , \left ( \dfrac{dy}{dx} \right )_{x=1}=-1\,\, , \left ( \dfrac{dy}{dx} \right )_{x=4}=2 $$

    $$ \Rightarrow$$ Tangent at $$ (1, \dfrac{1}{2}$$ is $$ y- \dfrac{1}{2}=-1(x-1) \, or \, 2x+2y-3=0 $$

    Tangent at $$(4,2)$$ is $$ y-2=2(x-4) \, or\, 2x-y-6=0 $$

    Hence, A= $$ \displaystyle \int_{1}^{\frac{5}{2}} \left ( \dfrac{x^{2}}{2}-2x+2-\dfrac{3-2x}{2} \right )dx+\displaystyle \int_{\frac{5}{2}}^{4}\left ( \dfrac{x^2}{2}-2x+2-(2x-6) \right )dx $$

    $$ =\displaystyle \int_{1}^{4}\left ( \dfrac{x^{2}}{2}-2x+2 \right )dx- \displaystyle \int_{1}^{\frac{5}{2}}\left ( \dfrac{3-2x}{2} \right )dx- \displaystyle \int_{\frac{5}{2}}^{4}(2x-6)dx $$

    $$ = \left ( \dfrac{x^{3}}{6}-x^{2}+2x \right )_{1}^{4}-\dfrac{1}{2}(3x-x^{2})_{1}^{\frac{5}{2}}-(x^{2}-6x)_{\frac{5}{2}}^{4} $$

    $$ = =\left ( \dfrac{63}{6}-15+6 \right )-\dfrac{1}{2}\left ( 3 \times \dfrac{3}{2}-\left ( \dfrac{25}{4}-1 \right ) \right )-\left ( \left ( 16-\dfrac{25}{4} \right )-6\left ( 4-\dfrac{5}{2} \right ) \right ) $$

    $$ = \dfrac{3}{2}- -\dfrac{1}{2}\left ( \dfrac{9}{2}-\dfrac{21}{4} \right )-\left ( \dfrac{39}{4}-6\left ( \dfrac{3}{2} \right ) \right ) $$

    $$ \dfrac{9}{8} \, sq.units $$

  • Question 10
    1 / -0
    The area of the region in 1st quadrant bounded by the $$y-axis, \, y=\dfrac{x}{4}, \, y=1+\sqrt{x} \, and\, y= \dfrac{2}{\sqrt{x}} $$
    Solution
    $$ A_{1}= \displaystyle \int_{0}^{1}\left ( 1+ \sqrt{x}-\dfrac{1}{x} \right )dx $$

    $$\left [x + \dfrac{2x^{\frac{3}{2}}}{3}-\dfrac{x^{2}}{8}  \right ]_{0}^{1}= 1+ \dfrac{2}{3}-\dfrac{1}{8}=\dfrac{37}{24} $$

    $$ A_{2}= \displaystyle \int_{1}^{4}\left ( \dfrac{2}{\sqrt{x}}-\dfrac{x}{4} \right )dx $$

    $$  = \left [ 4\sqrt{x}-\dfrac{x^{2}}{4} \right ]_{1}^{4} $$

    $$ = \left [ 8-2-4+\dfrac{1}{8} \right ]= \dfrac{17}{8} $$

    $$ \Rightarrow A=A_{1}+A_{2} \, = \dfrac{88}{24}=\dfrac{11}{3} \,sq.units. $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now