Self Studies

Application of Integrals Test - 49

Result Self Studies

Application of Integrals Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the region bounded by $$x^2+y^2-2x-3=0$$ and $$y=|x|+1$$ is
    Solution
    $$x^2+y^2-2x-3=0$$ 

    $$ \Rightarrow (x-1)^2+y^2=4 $$

    A= $$ \displaystyle \int_{1-\sqrt{2}}^{0} ( \sqrt{4-(x-1)^2} - (-x+1)dx + \displaystyle \int_{0}^{1} ( \sqrt{4-(x-1)^2} - (x+1))dx $$

    $$ = \dfrac{x-1}{2} \sqrt{4-(x-1)^{2}}+ \dfrac{4}{2} \sin^{-1} \dfrac{x-1}{2}+ \dfrac{x^{2}}{2}-x\left |_{1-\sqrt{2}}^{0}+ \dfrac{x-1}{2} \sqrt{4-(x-1)^2}+ \dfrac{4}{2} \sin^{-1} \dfrac{x-1}{2}- \dfrac{x^{2}}{2}-x \right |_{0}^{1} $$

    $$ -\left ( -1- \dfrac{\pi}{2}+\dfrac{3}{2}- \sqrt{2}-1+\sqrt{2} \right )- \dfrac{3}{2}=\dfrac{\pi}{2}-1 \, sq.units $$

  • Question 2
    1 / -0
    The value of the parameter $$a$$ such that the area bounded by $$y=a^{2}x^{2}+ax+1,$$ coordinate axes and the line $$x=1$$ attains its least value, is equal to 
    Solution
    $$ a^{2}x^{2} + ax+1$$ is clearly positive for all real values of $$x$$. Area under consideration.

    $$ A= \displaystyle \int_{0}^{1} (a^{2}x^{2} + ax+1) dx $$

    $$ = \dfrac{a^{2}}{3} +\dfrac{a}{2} +1 $$

    $$ = \dfrac{1}{6} (2a^{2}+3a+6) $$

    $$ = \dfrac{1}{6}\left ( 2\left ( a^{2}+\dfrac{3}{2}a+ \dfrac{9}{16} \right )+6-\dfrac{18}{16} \right ) $$

    $$ = \dfrac{1}{6}\left ( 2\left ( a+\dfrac{3}{4} \right )^2+6-\dfrac{18}{16} \right ) $$

    Which is clearly minimum for $$ a= -\dfrac{3}{4} $$
  • Question 3
    1 / -0
    The area bounded by $$ y=\sec^{-1}x\, y=cosec^{-1}x \,$$ and line $$x-1=0$$ is
    Solution
    Integrating along $$x-axis$$, we get

    $$A= \displaystyle \int_{1}^{\sqrt{2}} (\ cosec^{-1}x\,- \ sec^{-1}x)dx $$

    Integrating along $$ y-axis$$, we get

    $$A= 2\displaystyle \int_{0}^{\dfrac{\pi}{4}} (\ sec\,y-1)dy $$

    $$ = 2[log|\ sec\,y+\ tan\,y|-y]_{0}^{\frac{\pi}{4}} $$

    $$ = 2\left [ log|\sqrt{2}+1|-\dfrac{\pi}{4} \right ]=log(3+2\sqrt{2})- \dfrac{\pi}{2} $$

  • Question 4
    1 / -0
    The area of the closed figure bounded by $$ x=-1, \, x=2$$ and $$ y= -x^2+2, \, x\leq 1$$ and $$y= 2x-1 ,\, x>1$$ and the abscissa axis is 
    Solution
    $$ A= \displaystyle \int_{-1}^{1} (-x^{2}+2)dx+ \displaystyle \int_{1}^{2}(2x-1)dx $$

    $$ =\left ( -\dfrac{x^{3}}{3}+2x \right )_{-1}^{1}+(x^{2}-x)_{1}^{2} $$

    $$ = \dfrac{16}{3} \, sq.units $$

  • Question 5
    1 / -0
    The area of the region whose boundaries are defined by the curves $$y=2 \ cos\,x, \, y=3 \ tan\,x$$ and the $$y-axis$$ is 
    Solution
    Solving $$ 2 \cos \,x = 3 \tan \,x$$, we get

    $$ 2-2 \ sin^{2}x=3 \sin \,x \,\,\,\ \Rightarrow \ sin \,x=\dfrac{1}{2}\,\,\,\, \Rightarrow x= \dfrac{\pi}{6} $$

    Required Area= $$ \displaystyle \int_{0}^{\dfrac{\pi}{6}} (2\ cos\,x-3 \tan\,x) dx $$

    $$ = 2 \ sin\,x - 3 log \ sec\,x|_{0}^{\frac{\pi}{6}} = 1-3ln2 + \dfrac{3}{2}ln3\, sq.units. $$

  • Question 6
    1 / -0
    A tangent having slope of $$-\dfrac{4}{3} $$ to the ellipse $$\dfrac{x^{2}}{18}+ \dfrac{y^{2}}{32}=1 $$ intersects the major and minor axes at points A and B respectively. If C is the center of the ellipse , then area of the triangle ABC is
    Solution
    One of the tangents of slope m to the given ellipse is 
                          $$y=mx + \sqrt{18m^{2}+ 32}$$
    For                 $$m=-\dfrac{4}{3}$$,
    we have          $$y=-\dfrac{4}{3}x+ 8.$$
    Then points on the axis where tangents meet are A(6,0) and B(0,8).
    Then area of triangle ABC is $$\dfrac{1}{2}(6)(8)= 24 units.$$
  • Question 7
    1 / -0
    The area enclosed by the curves $$xy^2 =a^2(a-x)$$ and $$(a - x) y^2 = a^2x$$ is
  • Question 8
    1 / -0

    Directions For Questions

    Consider the areas $$S_0,S_1,S_2$$..... bounded by the x-axis and half-waves of the curve $$y=e^{-x}\sin\,x$$ where $$x\ge 0$$.

    ...view full instructions

    The sequence $$S_0,S_1,S_2$$.... forms a G.P with common ratio
    Solution

  • Question 9
    1 / -0
    The area of the loop of the curve, $$ay^2 =x^2 (a - x)$$ is 
    Solution
    $$ay^2 = x^2 (a -x) \Rightarrow y = \pm \ x \sqrt{\dfrac{a-x}{a}}$$

    Curve tracing : $$y = x \sqrt{\dfrac{a-x}{a}}$$ 

    We must have $$x \le a$$
    For $$0  < x \le a, \ y > 0$$ and for $$x < 0, y < 0$$
    Also $$y = 0 \Rightarrow x = 0, a$$
    Curve is symmetrical about x-axis.
    When $$x \to -\infty, y \to - \infty$$
    Also, it can be verified that $$y$$ has only one point of maxima for $$0 < x < a$$.

    Area $$=\displaystyle 2\int_0^a x \sqrt{\dfrac{a-x}{a}}dx$$

    $$\sqrt{\dfrac{a-x}{a}} = t \Rightarrow - \dfrac{x}{a}=t^2 \Rightarrow x=a(1 - t^2)$$

    $$\Rightarrow A = 2\displaystyle \int_1^0 a(1 - t^2)t(-2at)dt$$

    $$=\displaystyle 4a^2 \int_0^1 (t^2 - t^4)dt$$

    $$= 4a^2 \left[\dfrac{t^3}{3} - \dfrac{t^5}{5}\right]^1_0$$

    $$=4a^2\left[ \dfrac{1}{3} - \dfrac{1}{5}\right] = \dfrac{8a^2}{15} $$ sq. units

  • Question 10
    1 / -0
    The area enclosed by the circle $$x^{2} + y^{2} = 2$$ is equal to
    Solution
    Correct answer is (D); since Area $$= 4\int_{0}^{\sqrt {2}} \sqrt {2 - x^{2}}$$
    $$= 4\left (\dfrac {x}{2} \sqrt {2 - x^{2}} + \sin^{-1} \dfrac {x}{\sqrt {2}}\right )_{0}^{\sqrt {2}} = 2\pi \ sq\ units$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now