Self Studies

Application of Integrals Test - 51

Result Self Studies

Application of Integrals Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of the region bounded by the curve $$y^{2}=4x, y-$$ axis and the line $$y=3$$ is 
    Solution
    (1) Curve $$y^{2}=4x$$ is right handed parabola
    (2) line $$y=3\Rightarrow$$ points in line area $$(0,3), (1,3), (2,3), (3,3), (-1,3)(-2,3)$$ 
    (3) Pt where line meets $$y^{2}=4x$$ is solved by. solving the equation
    as we know $$y=3$$ so $$x=\dfrac{3^{2}}{4}\Rightarrow \dfrac{9}{4}$$
    so pt is $$\left(\dfrac{9}{4},3\right)$$
    (If we solve along $$'y'$$ axis)
    [Here to solve along $$'x'$$ axis, it is tough as to get equation of line in terms of $$x$$ is tough.
    (4) So area is area under parabola from $$y=0$$ to $$y=3$$.
    = Area of shade $$=\displaystyle\int_{0}^{3}|x|dy=\int_{0}^{3}\dfrac{y^{2}}{4}dy$$
    $$=\left.\dfrac{1}{4}\times \displaystyle\int_{0}^{3}y^{2}dx=\dfrac{1}{4}\times \dfrac{y^{3}}{3}\right]_{0}^{3}=\dfrac{1}{4}\times \left(\dfrac{3^3}{3}-\dfrac{0^3}{3}\right)$$
    $$=\left(\dfrac{1}{4}\times \dfrac{27}{3}\right)-0=\dfrac{9}{4}sq.units$$     So Answer is $$(b)\dfrac{9}{4}$$.
    Option $$(B)$$

  • Question 2
    1 / -0
    I: The area bounded by the curves $$y=\sin x,\ y=\cos x$$ and $$\mathrm{Y}$$-axis is $$\sqrt{2}-1$$ sq. units.
    II: The area bounded by $$y=\cos x,\ y=x+1,\ y=0$$ is 3/2 sq. units.

    Which of the above statement is correct?
    Solution
    $$I)$$
    The required area will be 
    $$\int_{0} ^{\frac{\pi}{4}} cos(x)-sin(x) .dx$$

    $$=[sin(x)+cos(x)]_{0} ^{\frac{\pi}{4}}$$

    $$=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-1$$

    $$=\sqrt{2}-1$$ sq units.

    $$II)$$
    Required area will be 
    $$\int_{-1} ^{0} x+1 .dx+\int_{0} ^{\frac{\pi}{2}} cos(x).dx$$

    $$=[\dfrac{x^{2}}{2}+x]_{-1} ^{0} +[sin(x)]_{0} ^{\frac{\pi}{2}}$$

    $$=-(\dfrac{1}{2}-1)+1$$

    $$=\dfrac{3}{2}$$ sq units.
  • Question 3
    1 / -0
    Arrangement of the following areas between the curves is descending order:
    $$\mathrm{A}:y^{2}=4x,\ x^{2}=4y$$
    $$ \mathrm{B}.\ y=x,\ y=x^{3}$$
    $$\mathrm{C}.\ y^{2}=8x,y=2x$$
    $$ \mathrm{D}.\ y=\sqrt{x},\ y=x^{2}$$
    Solution
    A    $$\frac{16}{3}a^2=16/3\:sq\:units.$$ $$(a=1)$$
    B    $$1/2\:sq\:units.$$
    C    $$\overset {2 }{ \underset { 0 }{ \int  }  } (2x-\sqrt{8x})dx$$ . $$4-\frac{2}{3}\sqrt{8}   2\sqrt{2}$$
                                                  $$\left | 4-\frac{4}{3} \times 4\right |=4/3\:sq\:units.$$
    D    $$\frac{16}{3}(1/16)=1/3\:sq\:units.$$   $$(a=1/4)$$
       So, descending order is A,C,B,D

  • Question 4
    1 / -0
    Match the following:
    List-IList-II
    1. Area of the region bounded by $$y=|5\sin x|$$ from $$\mathrm{x}=0$$ to $$ x=4\pi$$ and x-axisa. 3/2
    2. The area bounded by $$\mathrm{y}=$$ cosx in $$[0,2\pi]$$ and the $$\mathrm{X}$$-axisb. $$\sqrt{2}-1$$
    3. The area bounded by $$y=sinx, y=cosx$$ and the y-axisc. 4
    4. The area bounded by $$y = cos x , y = x +1, y=0$$d. 40
    The correct match is
    Solution
    1.  $$y=|5\sin x|$$
         $$\overset {4\pi }{ \underset { 0 }{ \int  }  } |5\sin x|dx=5\times4\overset {\pi }{ \underset { 0 }{ \int  }  } \sin x=40\:sq\:units.$$
    2.  $$y=\cos x$$ $$\leftarrow [0,2\pi]$$
         $$4\overset {\pi/2 }{ \underset { 0 }{ \int  }  } cos x\:dx=4\:sq\:units.$$
    3.  $$\overset {\pi /4}{ \underset { 0 }{ \int  }  } (\cos x-\sin x)dx=(\sqrt{2}-1)sq\:units.$$
    4.  $$1+1/2=3/2sq\:units.$$
          d,c,b,a

  • Question 5
    1 / -0
    The area bounded by the $$y=\left| \sin { x }  \right| $$, x-axis and the lines $$\left| x \right| =\pi $$ is
    Solution
    Required Area $$=A_1+A_2=2A_2$$

                             $$\displaystyle =2\left[\int^{\pi}_0 y\,dx=\int^{\pi}_0\,|\sin x|dx\right]$$

                            $$\displaystyle \Rightarrow 2\int^{\pi}_0\sin x\,dx=2[-\cos x]^{\pi}_0$$

                           $$\Rightarrow 2[-\cos\pi+\cos 0]=2[-(-1)+1]$$

                           $$\Rightarrow 2\times (1+1)=2\times 2=4$$ Sq. unit

  • Question 6
    1 / -0
    Match the following:
    List-IList-II
    1. Area of region bounded by $$y=2x-x^{2}$$ and $$x-$$axisa. $$\dfrac13$$
    2. Area of the region $$\{(x, y):x^{2}\leq y\leq|x|\}$$b. $$\dfrac12$$
    3. Area bounded by $$y=x$$ and $$y=x^{3}$$c. $$\dfrac23$$
    4. Area bounded by $$y=x|x|$$, $${x}$$-axis and $${x}=-1,\ {x}=1$$d. $$\dfrac43$$
    The correct match for $$1\ 2\ 3\ 4$$ is
    Solution
    1:
    $$y=2x-x^2$$
    The values of $$x$$ where $$y$$ is $$0$$ are
    $$x = 0,2$$
    Now, the area of the region bounded by $$y=2x-x^2$$ and $$x-$$axis is
    $$\displaystyle \int_0^2(2x-x^2)\ dx = \left[x^2 - \dfrac{x^3}{3}\right]_0^2$$
    $$=4-\dfrac83 = \dfrac43\ \ \rightarrow d$$

    2:
    $$x^2≤y≤|x|$$
    We have to find the area of the region bounded by $$y=x^2$$ and $$y = |x|$$ for $$x\in[-1,1]$$
    $$\displaystyle\int_{-1}^1-(x^2-|x|)\ dx = -2\int_0^1(x^2-x)\ dx$$
    $$ = -2\left[\dfrac{x^3}3 - \dfrac{x^2}2\right]_0^1 = \dfrac13\ \ \rightarrow a$$

    3:
    We have to find the area of the region bounded by $$y=x$$ and $$y = x^3$$ for $$x\in[-1,1]$$
    $$\displaystyle\int_{-1}^1(x-x^3)\ dx = 2\int_0^1(x-x^3)\ dx$$
    $$ =2\left[\dfrac{x^2}2 - \dfrac{x^4}4\right]_0^1 = \dfrac14\ \ \rightarrow b$$

    4:
    We have to find the area of the region bounded by $$y=x|x|$$ and $$y = 0$$ for $$x\in[-1,1]$$
    $$\displaystyle\int_{-1}^1(x|x|)\ dx = 2\int_0^1(x^2)\ dx$$
    $$ =2\left[\dfrac{x^3}3\right]_0^1 = \dfrac23\ \ \rightarrow c$$

    Hence, option C.
  • Question 7
    1 / -0
    The area of the region bounded by the curves $$y=ex\log x$$ and $$y=\displaystyle \frac{\log x}{ex}$$ is:
    Solution
    $$\left | \overset {1  }{ \underset { 1/e}{ \int  }  }  ex\log x-\dfrac{\log x}{ex}dx\right |$$

    $$\left |e\overset {1  }{ \underset { 1/e}{ \int  }  }  x\log x-\dfrac{1}{e}\overset {1  }{ \underset { 1/e}{ \int  }  } \frac{\log x}{x}dx\right |$$

    $$\left |e  \left ( log x \frac{x^2}{2}-\frac{1}{4}x^2\right) \left |_{1/e}^{1}-\dfrac{1}{e}\dfrac{(\log x)^2}{2}  \right |_{1/e}^{1}\right|$$

    $$\left |e  \left (\dfrac{-1}{4}-\left (\dfrac{(-1)e^{-2}}{2} -\dfrac{1}{4}e^{-2} \right ) -1/e\left (0-\left ( \dfrac{1}{2} \right )  \right ) \right )\right|$$

    $$\dfrac{-e}{4}+\left ( \dfrac{3}{4}e^{-1} \right )+\dfrac{2}{4e}$$

    $$\left |\dfrac{-e}{4} +\dfrac{5}{4e} \right |=\dfrac{e^2-5}{4e}sq\:units.$$
  • Question 8
    1 / -0
    Area of the figure bounded by the lines $$ y=\sqrt{x},x\in [0,1],\ y=x^{2},\ x\in[1,2]$$ and $$y=-x^{2}+2x+4,x\in0,2]$$ is:
    Solution
    As shown in the figure, the area bounded
    $$ =  \int _0 ^2 (-x^{2}+2x+4) dx -  \int _0 ^1 \sqrt{x} dx - \int _1 ^2 x^2 dx $$
    $$= \cfrac{19}{3}$$

  • Question 9
    1 / -0

    The area bounded by the parabolas $$\mathrm{y}^{2}=5\mathrm{x}+6$$ and $$\mathrm{x}^{2}=\mathrm{y}$$
    Solution
    $$y^{2}=5x+6$$ and $$x^{2}=y$$
    Then
    $$x^{4}=5x+6$$
    Or 
    $$x^{4}-5x-6=0$$
    $$x=-1$$ is an obvious root.
    Then
    $$x^{4}-5x-6=0$$
    $$(x+1)(x-2)(x^{2}+x+3)=0$$
    Now $$x^{2}+x+3=0$$ has no real roots since $$D<0$$.
    Hence we have to find the area between the curves for x=-1 to x=2.
    Therefore 
    $$Area$$
    $$=|\int_{-1} ^{2}x^{2}-\sqrt{5x+6}.dx|$$

    $$=|[\dfrac{x^{3}}{3}-\dfrac{2}{15}(5x+6)^{\frac{3}{2}}]_{-1} ^{2}|$$

    $$=|\dfrac{8}{3}-\dfrac{128}{15}-[\dfrac{-1}{3}-\dfrac{2}{15}]|$$

    $$=|\dfrac{9}{3}-\dfrac{126}{15}|$$

    $$=\dfrac{126-45}{15}$$

    $$=\dfrac{81}{15}$$

    $$=\dfrac{27}{5}$$.
  • Question 10
    1 / -0
    The ratio of the areas into which the circle $$x^{2}+y^{2}=64$$ is divided by the parabola $$y^{2}=12x$$ is:
    Solution
    $$x^2+y^2 = 64$$ ... (i)
    $$y^2 = 12x$$ ... (ii)
    Substituting (ii) in (i), we get
    $$x^2 + 12x -64 = 0$$
    $$x^2 + 16x -4x -64 = 0$$
    $$(x-4)(x+16) = 0$$
    $$x =4$$ is the feasible solution.
    $$ y^2 = 12x$$
    $$ y = \pm \sqrt{48} = \pm 4\sqrt{3}$$
    Angle made at the center by the two points $$=   2 tan^{-1}(4\sqrt{3}/4) = \cfrac{2\pi}{3}$$

    Area of Region inside Parabola $$=$$  Area of sector $$+$$ area b/w parabola and Straight line from origin (as shown in figure) 
    $$= _0 ^4\int (\sqrt{12x} - \sqrt{3}x)dx $$
    $$=  8 \sqrt{3} $$
    So Total area inside parabola $$=  \cfrac{2 \pi/3}{2 \pi} \pi 64 + \cfrac{16 \sqrt{3}}{3}$$
    $$= \cfrac{16}{3}(4 \pi + \sqrt{3})$$
    Area of remaining part of circle $$= 64 \pi - \cfrac{16}{3}(4 \pi + \sqrt{3}) $$
    Ratio $$= \displaystyle \dfrac{4\pi+\sqrt{3}}{8\pi-\sqrt{3}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now