Self Studies

Application of Integrals Test - 52

Result Self Studies

Application of Integrals Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by the parabola $$\mathrm{y}^{2}=4\mathrm{a}(\mathrm{x}+\mathrm{a})$$ and $$\mathrm{y}^{2}=-4\mathrm{a}(\mathrm{x}-\mathrm{a})$$ is
    Solution
    $$\mathrm{y}^{2}=4\mathrm{a}(\mathrm{x}+\mathrm{a})$$ and $$\mathrm{y}^{2}=-4\mathrm{a}(\mathrm{x}-\mathrm{a})$$
    The area bounded by the parabola in the 2nd quadrant,
    $$\overset{0}{\underset{-a}{\int}}\sqrt{4a(x+a)}dx$$
    Since the figure is symmetric, multiply the  given area by 4.
    $$4\times \: 2\sqrt{a}\overset{0}{\underset{-a}{\int}}\sqrt{(x+a)}dx$$
    $$\displaystyle \frac{2}{3}\times 8\sqrt{a}(x+a)^{3/2}|_{-a}^{0}$$
    $$\displaystyle \frac{2}{3}\times 8\times a^2=\displaystyle \frac{16}{3}a^2sq\:units$$.

  • Question 2
    1 / -0
    $$\sin x$$ & $$\cos x$$ meet each other at a number of points and develop symmetrical area. Area of one such region is
    Solution
    Considering one such case:
    $$\sin x$$ ans $$\cos x$$ meet each other at $$\dfrac{\pi}4$$ and $$\dfrac{5\pi}4$$.
    Area enclosed by $$\sin x$$ and $$\cos x$$ between $$\dfrac{\pi}4$$ and $$\dfrac{5\pi}4$$ is twice the area enclosed between $$\dfrac{\pi}4$$ and $$\dfrac{3\pi}4$$.
    $$\therefore A = \displaystyle \int_{\tfrac{\pi}4}^{\tfrac{5\pi}{4}}(\sin x - \cos x)\>dx = 2\int_{\tfrac{\pi}4}^{\tfrac{3\pi}{4}}(\sin x - \cos x)\>dx$$
    $$A = 2\left(\displaystyle\int_{\tfrac{\pi}4}^{\tfrac{\pi}{2}}(\sin x - \cos x)\>dx + \int_{\tfrac{\pi}2}^{\tfrac{3\pi}{4}}(\sin x - \cos x)\>dx\right)$$
    $$A = 2\sqrt2$$
  • Question 3
    1 / -0
    Let $$\displaystyle \mathrm{f}(\mathrm{x})=\min\{x+1,\ \sqrt{1-x}\}$$, then the area bounded by $$\mathrm{y}={f}({x})$$ and $${x}$$-axis is:
    Solution
    $$\displaystyle \mathrm{f}(\mathrm{x})=\min\{x+1,\ \sqrt{1-x}\}$$
    $$y=x+1$$ and $$y=\sqrt{1-x}$$ curves intersect at $$(0,1)$$ and
    $$f(x) = x+1$$  for $$x\in (-1,0)$$
    $$f(x) = \sqrt{1-x}$$ for $$x\in (0,1)$$
    $$\therefore$$ Area under the curve and x-axis is
    $$A = \displaystyle \int _{ -1 }^{ 0 }{ (x+1) } dx+\int _{ 0 }^{ 1 }{ \sqrt { 1-x }  } dx$$
        =$$\displaystyle\left[ \frac { x^{ 2 } }{ 2 } +x \right]^0_{-1} -\left[ \frac { \left( 1-x \right) ^{ 3/2 } }{ 3/2 }  \right] ^{ 1 }_{ 0 }\\ =\dfrac { 1 }{ 2 } +\dfrac { 2 }{ 3 } =\dfrac { 7 }{ 6 } $$
    $$\therefore$$ required area is  $$ \displaystyle \frac { 7 }{ 6 }$$ 
  • Question 4
    1 / -0
    Area bounded by the curves $$\displaystyle \frac{y}{x}=\log x$$ and $$\displaystyle \frac{y}{2}=-x^{2}+x$$ equals:
    Solution
    The two curves intersect at $$x=0$$ and $$x=1$$ can be found graphically.
    So area bound= $$ \int _0 ^1 (-2x^2+2x - xlogx)dx $$
    $$ = (\cfrac{-2x^3}{3} + x^2) | _0 ^1 - \int xlogxdx $$
    to Integrate $$xlogxdx$$, substitute $$logx =t,$$
                                                     $$dx= x dt$$
    Integral becomes $$ \int e^{2t}tdt $$
    Integration by parts and then putting limits gives $$= -1/4$$
    So bound area $$= -2/3 + 1 +1/4$$
                            $$= 7/12$$
  • Question 5
    1 / -0
    The area bounded by the curves $$\mathrm{y}=2^{\mathrm{x}}$$,$$\mathrm{y}=2\mathrm{x}-\mathrm{x}^{2}$$ between the lines $$\mathrm{x}=0,\ \mathrm{x}=2$$ is
    Solution
    $$\mathrm{y}=2^{\mathrm{x}}$$ , $$\mathrm{y}=2\mathrm{x}-\mathrm{x}^{2}$$
    $$\overset{2}{\underset{0}{\int}}2^{\mathrm{x}}dx-\overset{2}{\underset{0}{\int}}(2x-x^2)dx$$
    $$\dfrac{2^{\mathrm{x}}}{\log 2}\left | _{0}^{2} -\left ( x^2-\dfrac{x^3}{3} \right )\right |_{0}^{2}$$
    $$\dfrac{3}{\log 2}-\left [ 4-\dfrac{8}{3} \right ]$$
    $$=\left ( \dfrac{3}{\log 2}-4/3 \right )sq\:units.$$

  • Question 6
    1 / -0
    The area bounded by two branches of the curve $$(y-x)^{2}=x^{3} \& x=1$$ equals
    Solution
    $$ (y-x)^2 = x^3 $$
    $$ y = x^{3/2} +x $$ and $$ y = -x^{3/2} +x $$ 
    Area 1 $$=  _0 ^1\int ( x^{3/2} +x) dx  = \cfrac{2x^{5/2}}{5} + \cfrac{x^2}{2} |_0 ^1 = 2/5 + 1/2$$
    Area 2 $$=  _0 ^1\int ( -x^{3/2} +x) dx  = \cfrac{-2x^{5/2}}{5} + \cfrac{x^2}{2} |_0 ^1 = -2/5 +1/2$$
    Total Area $$=$$ Area 1 - Area 2$$ =$$ $$\cfrac{4}{5}$$
  • Question 7
    1 / -0
    Area bounded by $$x^{2}=4ay$$ and $$y=\displaystyle \frac{8a^{3}}{x^{2}+4a^{2}}$$ is:
    Solution
    points of intersection
    $$x^{2}=4ay$$ , $$y=\displaystyle \frac{8a^{3}}{x^{2}+4a^{2}}$$
    $$y(4ay+4a^{2})=8a^3$$
    $$\Rightarrow 4ay^2+4a^{2}y-8a^3=0$$
    $$y^2+ay-2a^2=0$$
    $$y=-2a;y=a$$
    there is only 1 point of intersection for $$y=a$$
    So, they don't enclose area
    So, zero
  • Question 8
    1 / -0
    Area bounded by the curves satisfying the conditions $$\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{36}\leq 1\leq\frac{x}{5}+\frac{y}{6}$$ is given by
    Solution
    Area bound b/w the ellipse and the line
    Area of quarter ellipse $$=  \cfrac{\pi ab}{4} =  \cfrac{\pi \times 5 \times 6}{4} $$
    Area under the line$$=  \cfrac{1}{2} \times 5 \times 6  = \cfrac{30}{2} $$
    Area b/w the two curves $$= \cfrac{15 \pi}{2} -\cfrac{30}{2} =\dfrac{15}{2}(\pi-2)$$

  • Question 9
    1 / -0
    The area of the region bounded by the curve y $$\displaystyle =\frac{16-x^{2}}{4}$$ and $$\displaystyle y=sec^{-1}[-sin^{2}x],$$ where [.] stands for the greatest integer function is:
    Solution
    $$[-sin^{2}x]=0\, or\, -1.\, But\, sec^{-1}0$$ is not defined .
    $$\therefore [-sin^{2}x]=-1.$$ 
    Hence the required area $$=$$ area between the parabola $$x^{2}=-4(y-4)$$ and the straight line 
    $$y=sec^{-1}=\pi .$$
    Hence the required area$$=$$ 2area MAB 
    $$2\int_{\pi }^{4}x\, dy=2\int_{\pi }^{4}\sqrt{16-4y}\, dy =4\int_{\pi }^{4}\sqrt{4-y}\, dy$$
    $$=-4\left \{ \dfrac{(4-y)^{3/2}}{\dfrac{3}{2}} \right \}_{\pi }^{4}=\dfrac{8}{3}(4-\pi )^{3/2}$$ 

  • Question 10
    1 / -0
    The area of the smaller region in which the curve $$y=\left [ \frac{x^{3}}{100}+\frac{x}{50} \right ],$$ where[.] denotes the greatest integer function, divides the circle $$\left ( x-2 \right )^{2}+\left ( y+1 \right )^{2}=4,$$ is equal to







    Solution
    Circle has (2, 1) as its center and radius of this circle is 2.
    Thus, if P(x, y) be any point on it. then x $$\epsilon $$ [0,4]

    $$Letg\left ( x \right )=\frac{x^{3}}{100}+\frac{x}{50}$$

    $$\Rightarrow g'\left ( x \right )=\frac{3x^{2}}{100}+\frac{1}{50}> 0 \forall x \epsilon \left ( 0,4 \right )$$

    Thus g(x) is increasing in [0, 4].
    g(0) $$=$$ 0, g(4)$$ =$$  $$\frac{18}{25}.$$

    Hence g(x) $$\epsilon \left [ 0,\frac{18}{25} \right ]\forall  x \epsilon \left [ 0,4 \right ]$$

    $$\Rightarrow \left [ g\left ( x \right ) \right ]=0 \forall x \epsilon \left [ 0,4 \right ].$$


    Thus $$y=\left [ \frac{x^{3}}{100}+\frac{x}{50} \right ],$$ simply represents the x-axis.
    CA $$=$$ CB $$=$$ 2, CD $$=$$ 1

    $$\Rightarrow cos\theta =\frac{CD}{CA}=\frac{1}{2}\Rightarrow \theta=\frac{\pi}{3}\Rightarrow \angle ACB=\frac{2\pi}{3}.$$

    $$\Delta _{ACB}=\frac{1}{2}.2^{2}sin\frac{2\pi}{3}=\sqrt{3}sq. units$$

    Area of sector ACB $$=\frac{1}{2}.2^{2}.\frac{2\pi}{3}=\frac{4\pi}{3}sq. units$$

    Thus area of smaller segment is $$=\frac{4\pi}{3}-\sqrt{3}=\frac{4\pi-3\sqrt{3}}{3}$$ sq. units
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now