Self Studies

Application of Integrals Test - 53

Result Self Studies

Application of Integrals Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$\displaystyle \mathrm{f}(\mathrm{x})=\max$$ $$\{x^{2},(1-x)^{2},2x(1-x) \forall 0\leq x \leq 1\}$$ then area of the region bounded by the curve $$\mathrm{y}=\mathrm{f}(\mathrm{x})$$ , $$\mathrm{x}$$-axis and $$\mathrm{x}= 0,\ \mathrm{x} =$$ 1 is equals
    Solution
    Solving $$y={ x }^{ 2 }$$ and $$y=2x\left( 1-x \right) $$ we get $$\displaystyle x=0,\frac { 2 }{ 3 } $$

    And solving $$y=(1-{ x })^{ 2 }$$ and $$y=2x\left( 1-x \right) $$, we get $$\displaystyle x=1,\frac { 1 }{ 3 } $$

    Therefore 
    The required area $$\displaystyle A=\int _{ 0 }^{ 1 }{ f\left( x \right) dx } =\int _{ 0 }^{ \frac { 1 }{ 3 }  }{ { \left( 1-x \right)  }^{ 2 } } dx+\int _{ \frac { 1 }{ 3 }  }^{ \frac { 2 }{ 3 }  }{ 2x } \left( 1-x \right) dx\quad +\int _{ \frac { 2 }{ 3 }  }^{ 1 }{ { x }^{ 2 }dx } $$

    $$\displaystyle ={ \left[ -\frac { 1 }{ 3 } { \left( 1-x \right)  }^{ 3 } \right] }_{ 0 }^{ \frac { 1 }{ 3 }  }+{ \left[ { x }^{ 2 }-\frac { 2{ x }^{ 3 } }{ 3 }  \right] }_{ \frac { 1 }{ 3 }  }^{ \frac { 2 }{ 3 }  }+{ \left[ \frac { { x }^{ 3 } }{ 3 }  \right] }_{ \frac { 2 }{ 3 }  }^{ 1 }$$

    $$\displaystyle =\frac { 19 }{ 81 } +\frac { 13 }{ 81 } +\frac { 19 }{ 81 } =\frac { 17 }{ 27 } $$

  • Question 2
    1 / -0

    The ratio in which the area bounded by the curves $$y^2=12x $$ and $$x^2=12y$$ is divided by the line x $$=$$ 3 is

    Solution

    $$y^2 =12 x$$             $$x^2 =12 y$$
    $$\displaystyle \int_0^3 \sqrt{12 x}-\int_0^3 \dfrac{x^2}{12} =\int_0^3 \sqrt{12  x} -\dfrac{x^2}{12}$$
    $$\displaystyle \dfrac{2\sqrt{12}x^{\dfrac{3}{2}}}{3} - \dfrac{x^3}{36}\int_0^3$$
    $$\displaystyle \dfrac{\sqrt{12}3\sqrt{3}}{3} - \dfrac{27}{36}$$
    $$12 - \dfrac{3}{4} =\dfrac{45}{4}$$
    Same as $$\dfrac{8}{4} $$  for remaining part
    $$\therefore  ratio =\dfrac{15}{49}$$

  • Question 3
    1 / -0
    Find the area enclosed between the curves $$y^2- 2ye^{sin^{- 1}x} + x^2- 1 +[x] +e^{2sin^{- 1}x} = 0$$ 
    and line x = 0 and $$x=\frac{1}{2}$$ is (where [.] denotes greatest integer function)
    Solution
    $$\left (y-e^{sin^-1 x}  \right )+x^2+[x]-1=0$$
    $$\therefore x\in \left ( 0, 1/2 \right )$$;[x] =0
    $$\Rightarrow y-e^{sin^- 1x} = \pm \sqrt{1- x^2}$$
    $$\Rightarrow y=e^{sin^- 1x}\pm \sqrt{1- x^2}$$
    $$\Rightarrow \overset {\frac{1}{2}}{\underset { 0 }{ \int } } y dx =\overset {\frac{1}{2}}{\underset { 0 }{ \int } }  \left |e^{sin^- 1x}+ \sqrt{1+ x^2}- \left (e^{sin^- 1x}- \sqrt{1- x^2}  \right ) \right |dx$$
    $$\Rightarrow A = 2\overset {\frac{1}{2}}{\underset { 0 }{ \int } }  \sqrt{1- x^2}dx$$ ; Let $$x =sin\, \theta$$ so $$dx =cos\, \theta \,d\, \theta$$
    $$\Rightarrow A = \overset {\frac{\pi }{6}}{\underset { 0 }{ \int } } 2\,cos^2\,\theta\,d\, \theta=\left [ \theta +\dfrac{sin\, 2\, \theta }{2} \right ]_0^{\pi /6}$$
    $$\Rightarrow A ={\pi /6}+\dfrac{\sqrt{3}}{4}$$
  • Question 4
    1 / -0
    If $$A_1$$ is the area bounded by $$y= \cos x, y = \sin x$$ &  $$x=0$$  and $$A_2$$ the area bounded by $$y = \cos x , y = \sin x , y = 0$$ in $$(0,\frac{\pi}{2})$$ then $$\displaystyle  \dfrac{A_1}{A_2}$$ equals to :
    Solution
    $$\displaystyle A_{1}=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin  x)dx =(\sin  x +\cos  x)_{0}^{\frac{\pi}{4}}$$
    $$\displaystyle =\left ( \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} -1\right ) =(\sqrt2-1)$$
    $$\displaystyle A_{2}=\int^{0}_{\frac{\pi}{4}}\sin  x dx+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cos  x dx =\left [ -\cos  x \right ]_{0}^{\frac{\pi}{4}}+(\sin  x)_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$
    $$\displaystyle =\left ( 1-\frac{1}{\sqrt{2}} \right )+\left ( 1-\frac{1}{\sqrt{2}} \right )=\left ( 2-\sqrt{2} \right )=\sqrt{2}(\sqrt{2}-1)$$
    Then, $$A_{1}:A_{2}=1:\sqrt{2}=\dfrac{1}{\sqrt{2}}$$

  • Question 5
    1 / -0
    The area bounded by the curves $$y = sin^{-1} |sin  x|$$ and $$y = (sin^{-1} | sin  x|)^{2},$$ where $$0\leq x\leq 2\pi ,$$ is:
    Solution
    $$y=sin^{-1}\left |sin x  \right | =\begin{cases} x  & 0\leq x< \pi /2 \\ \pi-x & \pi /2 \leq 
    x< \pi   \\ x-\pi & \pi \leq x< 3\pi /2  \\ 2\pi-x & 3\pi /2 \leq x< 2\pi   \  \end{cases}$$
    $$y=\left (sin^{-1}\left |sin x  \right |  \right )^{2}=\begin{cases} x^{2}  & 0\leq x< \pi /2 
    \\ \left (\pi-x  \right )^{2} & \pi /2 \leq x< \pi   \\ \left (x-\pi  \right )^{2} & \pi \leq 
    x< 3\pi /2  \\ \left (2\pi-x  \right )^{2} & 3\pi /2 \leq x< 2\pi   \  \end{cases}$$

    Therefore required area $$\displaystyle=4\int_{0}^{1}\left (x-x^{2}  \right )^{2}\mathrm{d} x+\int_{1}^{\frac{\pi }{2}}\left (x^{2}-x  \right )\mathrm{d} x$$
    $$\displaystyle =\frac{4}{3}+\pi ^{2}\frac{\pi -3}{6}  sq.units$$

  • Question 6
    1 / -0
    If $$\left| z- (4 + 4i) \right| \geq  4$$, then area of the region bounded by the locii of $$z,\; iz,\; - z$$ and $$-iz$$ is:
    Solution

    Locus of $$|z-(4+4i)|=4$$ is a circle with center at $$(4,4)$$ and radius $$4$$ is Complex plane.

    Hence, locus of $$|z-(4+4i)| \geq 4$$ is all points either on or outside the circle with radius $$4$$ and center $$(4,4)$$.

    Similarly, locus of $$|-z-(4+4i)| \geq 4$$ is all points on or outside the circle with radius $$4$$ and center $$(-4,-4)$$.

    Locus of $$|iz-(4+4i)| \geq 4$$ is all points on or outside the circle with radius $$4$$ and center $$(-4,4)$$.

    Finally, locus of $$|-iz-(4+4i)| \geq 4$$ is all points on or outside the circle with radius $$4$$ and center $$(4,-4)$$.

    Hence, the area bounded by locus of all four will be the area enclosed by the four circles in argand plane as shown in the figure.
    Area bounded$$=$$ area of shaded region
    $$= 64 - \pi r^{2}$$
    $$=64-16\pi =16(4-\pi )$$

  • Question 7
    1 / -0
    If the area bounded by the curve $$y = f(x)$$, the coordinate axes and the line $$x = x_1$$ is given by $$x_1e^{x_1}$$. Then $$f(x)$$ equals
    Solution

  • Question 8
    1 / -0
    If the area bounded by the curve $$|y|=sin^{-1}|x|$$ and  $$x=1$$ is $$a(\pi+b)$$, then the value $$a-b$$ is:
    Solution
    From the graph, the area bounded is $$Area = \displaystyle 2\int_0^1 sin^{-1}x  dx =\left[2x  sin^{-1}x \right]_0^1+\int_0^1\frac{-2x}{\sqrt{1-x^2}}dx$$
    $$=\pi + \left[ 2\sqrt{1-x^2}\right]_0^1=\pi-2$$
    $$\therefore a=1$$  and  $$b=-2$$
    $$\therefore a-b=3$$

  • Question 9
    1 / -0
    Area of the region bounded by the curve $$y = x^{2}$$ and $$y = sec^{-1} [sin^{2}x]$$ (where [ . ] denotes the greatest integer function) is
    Solution
    $$y=\sec^{-1}[-\sin^{2}x]\Rightarrow \sec^{-1}(-1)$$
    $$\Rightarrow y=\pi, x \neq n\pi$$
    $$A=2\int_{0}^{\sqrt{\pi}}(\pi - x^{2})dx=\frac{4}{3}\pi\sqrt{\pi}$$
  • Question 10
    1 / -0
    The area bounded by $$y=\sec^ {-1}{x}, y= \text{cosec}^{-1}{x}$$ and the line $$x-1=0$$ is:
    Solution
    $$\displaystyle A = \displaystyle {\int}_0^{\pi /4} \sec y dy +  {\int}_{\pi /4}^{\pi /2} \text{cosec} y\ dy - 1\times \frac{\pi}{2}$$

    $$\displaystyle=[\ln(\sec y + \tan y)]^{\pi /4}_0 + \left[\ln\tan\frac{y}{2}\right]^{\pi /2}_{\pi /4}-\frac{\pi}{2}$$

    $$\displaystyle=[\ln(\sqrt{2}+1)-\ln1] + \ln \tan\frac{\pi}{4}- \ln\tan \frac{\pi}{8}-\frac{\pi}{2}$$

    $$\displaystyle=\ln(\sqrt{2}+1)-\ln(\sqrt{2}-1)-\frac{\pi}{2}$$

    $$ = \ln\left(\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\right)-\dfrac{\pi}{2}$$

    $$\displaystyle=\ln(3+2\sqrt{2})-\frac{\pi}{2}$$

    Hence, option A is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now