Self Studies

Application of Integrals Test - 54

Result Self Studies

Application of Integrals Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area enclosed by $$x^2 + y^2 = 4, y = x^2 + x + 1,$$  $$y=\left [ \sin^{2}\displaystyle \frac{x}{4}+\cos\displaystyle \frac{x}{4} \right ]$$ and $$x$$-axis (where $$[.]$$ denotes the greatest integer function) is:
    Solution
    $$\displaystyle \sin^{ 2 }\frac { x }{ 4 } +\cos\frac { x }{ 4 } =1-\cos ^{ 2 }{ \frac { x }{ 4 } + } \cos\frac { x }{ 4 }$$

    $$\displaystyle =1-(\cos ^{ 2 }{ \frac { x }{ 4 }  } - \cos\frac { x }{ 4 } )$$

    $$\displaystyle=\frac { 5 }{ 4 } -\left( \cos\frac { x }{ 4 } -\frac { 1 }{ 2 }  \right) ^{ { 2 } }$$

    Now, for $$ -2\le x\le 2$$
    $$\Rightarrow \displaystyle -\frac{1}{2}\le \frac{x}{4}\le \frac{1}{2}  $$

    $$\Rightarrow \cos^{2}\displaystyle \frac{x}{4}\leq \cos\displaystyle \frac{x}{4}$$ for all $$x\in \left [-2,2  \right ]$$

    $$\Rightarrow \cos^{ 2 }\dfrac { x }{ 4 } +\sin ^{ 2 }{ \dfrac { x }{ 4 }  } \le \sin ^{ 2 }{ \dfrac { x }{ 4 }  } +\cos\dfrac { x }{ 4 }, \ \forall \ x\in \left[ -2,2 \right] $$ 

    $$\Rightarrow \left [\sin^{2}\displaystyle \frac{x}{4}+\cos\displaystyle \frac{x}{4}  \right ]=1\ \forall\ \ x\in \left [-2,2\right ]$$

    Now from the figure, to find the enclosed area, we have to find point of intersections of $$y=1$$ and the circle. 
    Solving both equations we get $$x=- \sqrt{3}$$ and $$ x = \sqrt{3}$$

    Also we have to find the points of intersection of $$y=1$$ and $$y=x^2+x+1$$. 
    Solving both equations we get $$x=-1$$ and $$x=0$$

    Now dividing the enclosed area into different intervals as per the points of intersections, we get required area 
    $$=\displaystyle \int_{-2}^{-\sqrt{3}}\sqrt{4-x^{2}}\mathrm{d} x+\int_{-\sqrt{3}}^{-1} \mathrm
    {d} x+\int_{-1}^{0}(x^{2}+x+1)\mathrm{d} x+\int_{0}^{\sqrt{3}}\mathrm{d} x+\int_{\sqrt{3}}^{2}\sqrt{4-x^{2}}\mathrm{d} x$$

    $$=\displaystyle \frac{2\pi }{3}+\sqrt{3}-\displaystyle \frac{1}{6}$$

  • Question 2
    1 / -0
    The area bounded by the function $$f(x)=x^{2}:R^{+}\rightarrow R^{+}$$ and its inverse function is:
    Solution
    Inverse of $$y = x^2$$ is $$y = \sqrt x $$ and required area $$= 2 \int_{o}^{1} (x - x^2) dx$$
    $$\displaystyle = 2[{\frac {x^2}{2} - \frac {x^3}{3}}]_0^1 = 2[\frac {1}{2} - \frac {1}{3}] = \frac {1}{3}$$ sq. units

  • Question 3
    1 / -0
    Find the area of the region bounded by the curves $$y= log_{e}x $$, $$ y=\sin ^{4} \pi x $$, $$x=0 $$
    Solution
    $$sin^{4}(\pi(x))$$
    $$=(sin^{2}\pi(x))^{2}$$
    $$=(\dfrac{1-cos2\pi(x)}{2})^{2}$$

    $$=\dfrac{1}{4}[1+cos^{2}2\pi(x)-2cos2\pi(x)]$$

    $$=\dfrac{1}{4}[1+\dfrac{1+cos4\pi(x)}{2}-2cos2\pi(x)]$$

    $$=\dfrac{1}{4}[\dfrac{3+cos4\pi(x)}{2}-2cos2\pi(x)]$$
    Hence the required area
    $$=\int_{0} ^{1} \dfrac{1}{4}[\dfrac{3+cos4\pi(x)}{2}-2cos2\pi(x)]-ln(x).dx$$

    $$=[\dfrac{3x}{8}+\dfrac{sin4\pi.x}{32\pi}-\dfrac{sin2\pi(x)}{4\pi}-x(ln(x)-1)]_{0} ^{1}$$

    $$=\dfrac{3}{8}-(-1)$$

    $$=\dfrac{11}{8}$$ sq units.
  • Question 4
    1 / -0
    Find the area bounded by the curves $$\displaystyle\ y=\sqrt{1-x^{2}}$$ and $$\displaystyle\ y=x^{3}-x $$. Also find the ratio in which the y-axis divide this area
    Solution
    The two curves are $$y=\sqrt { 1-{ x }^{ 2 } } $$    ....(1)
    and $$y={x}^{3}-x$$   ...(2)
    The point of intersection are $$P\left(-1,0\right);Q\left(1,0\right)$$
    Consider $$y=\sqrt { 1-{ x }^{ 2 } } $$
    On squaring both sides, we get
    $${x}^{2}+{y}^{2}=1$$
    But $$y=\sqrt { 1-{ x }^{ 2 } } \ge0$$ by the definition of square root which is a semi-circle with center $$\left(0,0\right)$$ and radius $$1$$ and above X-axis.
    Consider $$y={ x }^{ 3 }-x=x\left( x-1 \right) \left( x+1 \right) $$
    Now for $$x\le-1,0\le x\le1;y\le0$$ 
    and for $$-1\le x\le0,x\ge1;y\ge0$$
    Taking into account the oddness of the function and the intervals of constant sign.
    (We can construct its graph by finding the maxima and minima at $$\displaystyle x=\pm\frac{1}{\sqrt{3}}$$
    Thus the required Area $$={A}_{1}+{A}_{2}$$
    where $$\displaystyle { A }_{ 1 }=\int _{ -1 }^{ 0 }{ \left[ \sqrt { 1-{ x }^{ 2 } } -{ x }^{ 3 }+x \right] dx } =\frac { \pi  }{ 4 } -\frac { 1 }{ 4 } $$
    and $$\displaystyle { A }_{ 2 }=\int _{ 0 }^{ 1 }{ \left[ \sqrt { 1-{ x }^{ 2 } } -{ x }^{ 3 }+x \right] dx } =\frac { \pi  }{ 4 } +\frac { 1 }{ 4 } $$
    $$\Rightarrow$$ Required area $$\displaystyle=\frac{\pi}{2}$$ and required ratio $$\displaystyle =\frac { { A }_{ 1 } }{ { A }_{ 2 } } =\frac { \pi -1 }{ \pi +1 } $$

  • Question 5
    1 / -0
    Find the area of the region enclosed between the two circles $$\displaystyle\ x^{2}+y^{2}=1$$ & $$(x-1)^{2}+y^{2}=1$$
    Solution
    The circles intersect at $$x=0.5$$
    Hence the required area will be 
    $$=\displaystyle 2\int_{\frac{1}{2}} ^{1} \sqrt{1-x^{2}}-\sqrt{1-(x-1)^{2}}.dx$$

    $$=2\times\dfrac{1}{2}\left[\sin^{-1}(x)+x\sqrt{1-x^{2}}-\sin^{-1}(x-1)-(x-1)\sqrt{1-(x-1)^{2}}\right]_{\frac{1}{2}} ^{1}$$

    $$=\left[\sin^{-1}(x)+x\sqrt{1-x^{2}}-\sin^{-1}(x-1)-(x-1)\sqrt{1-(x-1)^{2}}\right]_{\frac{1}{2}} ^{1}$$

    $$=\dfrac{\pi}{2}-\left(\dfrac{\pi}{6}+\dfrac{\sqrt{3}}{4}+\dfrac{\pi}{6}+\dfrac{\sqrt{3}}{4}\right)$$

    $$=\dfrac{\pi}{2}-\dfrac{\pi}{3}-\dfrac{\sqrt{3}}{2}$$

    $$=\dfrac{\pi}{6}-\dfrac{\sqrt{3}}{2}$$ sq units.

  • Question 6
    1 / -0
    A polynomial function f(x) satisfies the condition $$f(x+1) =f(x)+2x+1$$. Find $$f(x)$$ if $$f(0)=1$$. Find also the equations of the pair of tangents from the origin on the curve $$y=f(x)$$ and compute the area enclosed by the curve and the pair of tangents.
    Solution
    Let $$f(x)=x^{2}+1$$
    Hence $$f(0)=1$$ and 
    $$f(x+1)$$
    $$=(x+1)^{2}+1$$
    $$=x^{2}+2x+2$$
    $$=(x^{2}+1)+2x+1$$
    $$=f(x)+2x+1$$.
    Therefore $$f(x)=x^{2}+1$$ satisfies all the conditions required.
    Let the tangents be $$y=mx$$
    Hence
    $$f'(x)_{x=h}=m$$
    Hence
    $$2x=m$$
    $$x=\dfrac{m}{2}$$ ...(i)
    Now
    $$mx=x^{2}+1$$

    $$x^{2}-mx+1=0$$

    $$x=\dfrac{m\pm\sqrt{m^{2}-4}}{2}$$

    $$=\dfrac{m}{2}$$ ... from i.
    Hence
    $$\sqrt{m^{2}-4}=0$$
    Or 
    $$m=\pm2$$.
    Hence the equations of the tangents are $$y=\pm2x$$
    The required area will be 
    $$=|2\int_{0}^{1} x^{2}+1-2x.dx|$$ or $$|2\int _{0}^{-1} x^{2}+1+2x.dx|$$
    Hence
    $$=|2\int_{0}^{1} x^{2}+1-2x.dx|$$
    $$=2\int_{0} ^{1}(x-1)^{2}.dx$$

    $$=2.|[\dfrac{(x-1)^{3}}{3}]|_{0} ^{1}$$

    $$=\dfrac{2}{3}$$sq units.
  • Question 7
    1 / -0
    Find the area enclosed the curves : $$y=ex\log { x } $$ and $$\displaystyle y=\frac { \log { x }  }{ ex } $$ where $$\log { e } =1$$
    Solution
    Both the curves are defined for $$x>0$$
    Both are positive when $$x>1$$ and negative when $$0<x<1$$
    We know $$\displaystyle\lim _{ x\rightarrow { 0 }^{ + } }{ \left( \log { x }  \right) \rightarrow -\infty  } $$
    Hence, $$\displaystyle\lim _{ x\rightarrow { 0 }^{ + } }{ \left( \log { x }  \right) \rightarrow -\infty  } $$ .Thus y-axis is asymptote of second curve.
    And $$\displaystyle\lim _{ x\rightarrow { 0 }^{ + } }{ ex\log { x }  } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \left[ \left( 0 \right) \times \infty form \right] $$
    $$\displaystyle =\lim _{ x\rightarrow { 0 }^{ + } }{ \frac { e\log { x }  }{ \frac { 1 }{ x }  }  } \left( -\frac { \infty  }{ \infty  } form \right) $$
    $$\displaystyle =\lim _{ x\rightarrow { 0 }^{ + } }{ \frac { e\left( \frac { 1 }{ x }  \right)  }{ \left( -\frac { 1 }{ { x }^{ 2 } }  \right)  }  } =0$$ (using L'hopital rule)
    Thus, the first curve starts from $$(0,0)$$ but does not include $$(0,0)$$
    Now, the given curves intersect, therefore
    $$\displaystyle ex\log { x } =\frac { \log { x }  }{ ex } \Rightarrow \left( { e }^{ 2 }{ x }^{ 2 }-1 \right) \log { x } =0$$
    $$\displaystyle \Rightarrow x=1,\frac { 1 }{ e } \quad \quad \quad \quad \left( since\quad x>0 \right) $$
    Therefore required area 
    $$\displaystyle =\int _{ \frac { 1 }{ e }  }^{ 1 }{ \left( \frac { \left( \log { x }  \right)  }{ ex } -ex\log { x }  \right)  } dx$$$$\displaystyle=\frac { 1 }{ e } { \left[ \frac { { \left( \log { x }  \right)  }^{ 2 } }{ 2 }  \right]  }_{ \frac { 1 }{ e }  }^{ 1 }-e{ \left[ \frac { { x }^{ 2 } }{ 4 } \left( 2\log { x } -1 \right)  \right]  }_{ \frac { 1 }{ e }  }^{ 1 }$$
    $$\displaystyle =\frac { { e }^{ 2 }-5 }{ 4e } $$
  • Question 8
    1 / -0
    The area included between the curve $${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$$ and $$\displaystyle \sqrt { \left| x \right|  } +\sqrt { \left| y \right|  } =\sqrt { a } \left( a>0 \right) $$ is:
    Solution
    The graphs $$\displaystyle \left| x \right| +\left| y \right| =a$$ and $$\displaystyle { \left| x \right|  }^{ 2 }+{ \left| y \right|  }^{ 2 }={ a }^{ 2 }$$ are as shown in the figure 
    From the figure, it is clear that when powers of $$|x| $$ and $$|y|$$ both are reduced to half the straight lines get stretched inside.
    Thus, the required area
    $$=4$$ $$[$$shaded area in the first quadrant$$]$$
    $$\displaystyle =4\left[ \frac { \pi { a }^{ 2 } }{ 4 } -\int _{ 0 }^{ a }{ \left( \sqrt { a } -\sqrt { x }  \right) ^{ 2 }dx }  \right] =\left( \pi -\frac { 2 }{ 3 }  \right) { a }^{ 2 }$$
    $$[$$In the first quadrant $$x,y>0,$$ therefore, $$\displaystyle \sqrt { \left| x \right|  } +\sqrt { \left| y \right|  } =\sqrt { a } \Rightarrow \sqrt { x } +\sqrt { y } =\sqrt { a } \Rightarrow y={ \left( \sqrt { a } -\sqrt { x }  \right)  }^{ 2 }]$$

  • Question 9
    1 / -0
    Sketch the region bounded by the curves $$ \displaystyle y=x^{2}$$ & $$ \displaystyle\ y= 2/(1+x^{2})$$. Find the area:
    Solution
    $$y=x^{2}$$ and $$y=\dfrac{2}{1+x^{2}}$$
    Therefore 
    $$x^{2}=\dfrac{2}{1+x^{2}}$$

    $$x^{4}+x^{2}-2=0$$

    $$(x^{2}+2)(x^{2}-1)=0$$
    Now x is real.
    Therefore $$x^{2}+2=0$$ is not possible.
    Hence
    $$x=\pm1$$.
    Hence the required area is 
    $$=\int_{-1} ^{1} x^{2}-\dfrac{2}{1+x^{2}}$$

    $$=2\int _{0} ^{1} x^{2}-\dfrac{2}{1+x^{2}}$$

    $$=2[\dfrac{x^{3}}{3}-2tan^{-1}(x)]_{0} ^{1}$$

    $$=2[\dfrac{1}{3}-2.\dfrac{\pi}{4}]$$

    $$=|\dfrac{2}{3}-\pi|$$

    $$=\pi-\dfrac{2}{3}$$ sq.units.
  • Question 10
    1 / -0
    The ratio in which the area bounded by the curves $$y^{2}=4x$$ and $$x^{2}=4y$$ is divided by the line $$x=1$$ is
    Solution
    For the point of intersection.
    $$\dfrac{x^{4}}{16}=4x$$
    $$x=0$$ and $$x=4$$...(i)
    Now the area bounded by the curve between x=0 and x=1
    $$=\int_{0} ^{1} 2\sqrt{x}-\dfrac{x^{2}}{4}$$

    $$=[\dfrac{4x\sqrt{x}}{3}-\dfrac{x^{3}}{12}]_{0}^{1}$$

    $$=\dfrac{4}{3}-\dfrac{1}{12}$$

    $$=\dfrac{15}{12}$$ ...(i)

    The area bounded by the curve between x=1 and x=4 is 
    $$=\int_{1} ^{4}2\sqrt{x}-\dfrac{x^{2}}{4}$$

    $$=[\dfrac{4x\sqrt{x}}{3}-\dfrac{x^{3}}{12}]_{1}^{4}$$

    $$=\dfrac{32}{3}-\dfrac{64}{12}-\dfrac{15}{12}$$

    $$=\dfrac{128-64-15}{12}$$

    $$=\dfrac{128-79}{12}$$

    $$=\dfrac{49}{12}$$ ...(ii)
    Hence the required ratio
    $$=\dfrac{i}{ii}$$

    $$=\dfrac{15}{49}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now