The two curves are $$y=\sqrt { 1-{ x }^{ 2 } } $$ ....(1)
and $$y={x}^{3}-x$$ ...(2)
The point of intersection are $$P\left(-1,0\right);Q\left(1,0\right)$$
Consider $$y=\sqrt { 1-{ x }^{ 2 } } $$
On squaring both sides, we get
$${x}^{2}+{y}^{2}=1$$
But $$y=\sqrt { 1-{ x }^{ 2 } } \ge0$$ by the definition of square root which is a semi-circle with center $$\left(0,0\right)$$ and radius $$1$$ and above X-axis.
Consider $$y={ x }^{ 3 }-x=x\left( x-1 \right) \left( x+1 \right) $$
Now for $$x\le-1,0\le x\le1;y\le0$$
and for $$-1\le x\le0,x\ge1;y\ge0$$
Taking into account the oddness of the function and the intervals of constant sign.
(We can construct its graph by finding the maxima and minima at $$\displaystyle x=\pm\frac{1}{\sqrt{3}}$$
Thus the required Area $$={A}_{1}+{A}_{2}$$
where $$\displaystyle { A }_{ 1 }=\int _{ -1 }^{ 0 }{ \left[ \sqrt { 1-{ x }^{ 2 } } -{ x }^{ 3 }+x \right] dx } =\frac { \pi }{ 4 } -\frac { 1 }{ 4 } $$
and $$\displaystyle { A }_{ 2 }=\int _{ 0 }^{ 1 }{ \left[ \sqrt { 1-{ x }^{ 2 } } -{ x }^{ 3 }+x \right] dx } =\frac { \pi }{ 4 } +\frac { 1 }{ 4 } $$
$$\Rightarrow$$ Required area $$\displaystyle=\frac{\pi}{2}$$ and required ratio $$\displaystyle =\frac { { A }_{ 1 } }{ { A }_{ 2 } } =\frac { \pi -1 }{ \pi +1 } $$