Self Studies

Application of Integrals Test - 55

Result Self Studies

Application of Integrals Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x) be an increasing function defined on [a, b] then
    max {f(t) such that $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x)  & min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a) and if f(x) be decreasing function defined on [a, b] then
    max {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a),
    min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x).
    On the basis of above information answer the following questions.
    $$\int_{0}^{\pi }max\left \{ \sin x, \cos x \right \}dx$$ is equal to
    Solution
    First plot the graph of $$y=\sin x$$, $$y=cos x$$ by a dotted curve & find their point of intersections.
    Now we find any two consecutive points of intersections. In between these points either $$\sin x> \cos x$$ or $$\cos x> \sin x$$ then in order to get max $$\left ( \sin x, \cos x \right )$$ we take those segments for which one function is greater than the other function.
    In the figure, A is the point of intersection of $$\sin x$$ and $$\cos x$$.
    $$\therefore $$   $$\displaystyle A\left ( \frac{\pi }{4}, \frac{1}{\sqrt{2}} \right )$$
    $$\therefore $$   max $$\left ( \sin x, \cos x \right )$$ $$\forall 0\leq x\leq \pi $$
    $$\therefore $$   $$\displaystyle =\begin{cases}
    \cos x & \forall  0\leq x\leq \dfrac{\pi }{4} \\ 
    \sin x & \forall  \dfrac{\pi }{4}\leq x\leq \pi  
    \end{cases}$$
    $$\therefore $$   $$\int_{0}^{\pi }max \left ( \sin x\cos x \right )dx=\int_{0}^{\pi /4}\cos xdx+\int_{\pi /4}^{\pi }\sin xdx =\sqrt{2}+1$$
  • Question 2
    1 / -0
    The ratio of the area's bounded by the curves $$ \displaystyle y^{2}=12x $$ and $$ \displaystyle x^{2}=12y $$ is divided by the line $$ \displaystyle x=3 $$ is
    Solution
    For the point of intersection
    $$2\sqrt{3x}-\dfrac{x^{2}}{12}=0$$
    Or 
    $$\sqrt{x}[24\sqrt{3}-x\sqrt{x}]=0$$

    $$x=0$$ and $$x=12$$.
    Hence
    $$\int _{0} ^{3} (2\sqrt{3x}-\dfrac{x^{2}}{12}).dx$$

    $$=[\dfrac{4\sqrt{3}}{3}.x^{\frac{3}{2}}-\dfrac{x^{3}}{36}]_{0} ^{3}$$

    $$=\dfrac{45}{4}$$ ...(i)

    And
    $$\int _{3} ^{12} (2\sqrt{3x}-\dfrac{x^{2}}{12}).dx$$

    $$=[\dfrac{4\sqrt{3}}{3}.x^{\frac{3}{2}}-\dfrac{x^{3}}{36}]_{3} ^{12}$$

    $$=\dfrac{147}{4}$$...(ii)
    Hence
    Ratio: $$\dfrac{i}{ii}$$

    $$=\dfrac{45}{147}$$

    $$=\dfrac{15}{49}$$.

  • Question 3
    1 / -0
    The function $$ \displaystyle f\left ( x \right )=\max \left \{ x^{2},\left ( 1-x \right )^{2},2x\left ( 1-x \right ) \forall 0\leq x\leq 1\right \} $$ then area of the region bounded by the curve $$ \displaystyle y=f\left ( x \right ) $$, x-axis and $$ \displaystyle x=0,x=1 $$ is equals,
    Solution
    Solving $$y={ x }^{ 2 }$$ and $$y=2x\left( 1-x \right) $$ we get $$\displaystyle x=0,\frac { 2 }{ 3 } $$

    And solving $$y=1-{ x }^{ 2 }$$ and $$y=2x\left( 1-x \right) $$, we get $$\displaystyle x=1,\frac { 1 }{ 3 } $$

    Therefore 
    The required area $$\displaystyle A=\int _{ 0 }^{ 1 }{ f\left( x \right) dx } =\int _{ 0 }^{ \frac { 1 }{ 3 }  }{ { \left( 1-x \right)  }^{ 2 } } dx+\int _{ \frac { 1 }{ 3 }  }^{ \frac { 2 }{ 3 }  }{ 2x } \left( 1-x \right) dx\quad +\int _{ \frac { 2 }{ 3 }  }^{ 1 }{ { x }^{ 2 }dx } $$

    $$\displaystyle ={ \left( -\frac { 1 }{ 3 } { \left( 1-x \right)  }^{ 3 } \right)  }_{ 0 }^{ \frac { 1 }{ 3 }  }+{ \left( { x }^{ 2 }-\frac { 2{ x }^{ 3 } }{ 3 }  \right)  }_{ \frac { 2 }{ 3 }  }^{ \frac { 2 }{ 3 }  }+{ \left( \frac { { x }^{ 3 } }{ 3 }  \right)  }_{ \frac { 2 }{ 3 }  }^{ 1 }$$

    $$\displaystyle =\frac { 19 }{ 81 } +\frac { 13 }{ 81 } +\frac { 19 }{ 81 } =\frac { 17 }{ 27 } $$

  • Question 4
    1 / -0
    The area lying in the first quadrant inside the circle $${ x }^{ 2 }+{ y }^{ 2 }=12$$ and bounded by the parabolas $${ y }^{ 2 }=4x,{ x }^{ 2 }=4y$$ is:
    Solution
    The required area 
    $$\displaystyle =\int _{ 0 }^{ 2 }{ 2\sqrt { x } dx } +\int _{ 2 }^{ 2\sqrt { 2 }  }{ \sqrt { 12-{ x }^{ 2 } } dx } -\int _{ 0 }^{ 2\sqrt { 2 }  }{ \frac { { x }^{ 2 } }{ 4 } dx } $$
    $$\displaystyle ={ \left[ \frac { 4{ x }^{ 3/2 } }{ 3 }  \right]  }_{ 0 }^{ 2 }+{ \left[ \frac { x }{ 2 } \sqrt { 12-{ x }^{ 2 } } +\frac { 12 }{ 2 } \sin ^{ -1 }{ \frac { x }{ 2\sqrt { 3 }  }  }  \right]  }_{ 2 }^{ 2\sqrt { 3 }  }-\frac { 1 }{ 4 } { \left[ \frac { { x }^{ 3 } }{ 3 }  \right]  }_{ 0 }^{ 2\sqrt { 2 }  }$$
    $$\displaystyle =4\left( \frac { \sqrt { 2 }  }{ 3 } +\frac { 3 }{ 2 } \sin ^{ -1 }{ \frac { 1 }{ 3 }  }  \right) $$

  • Question 5
    1 / -0
    The area bounded by $$ \displaystyle x=a\cos ^{3}\theta,y=a\sin ^{3}\theta $$ is:
    Solution
    Eliminating $$\theta $$, we have
    $$\displaystyle { x }^{ \dfrac { 2 }{ 3 }  }+{ y }^{ \dfrac { 2 }{ 3 }  }={ a }^{ \dfrac { 2 }{ 3 }  }\\ x=0\Rightarrow y=\pm a\\ y=0\Rightarrow x=\pm a$$
    Symmetric about both axis 
    Required area $$\displaystyle =4\int _{ 0 }^{ a }{ y } dx=4\int _{ \dfrac { \pi  }{ 2 }  }^{ 0 }{ y } \dfrac { dx }{ dt } dt$$
    $$\displaystyle y=a\sin ^{ 3 }{ t } ,x=a\cot ^{ 3 }{ t } \Rightarrow \frac { dx }{ dt } =-3a\cos ^{ 3 }{ t } \sin { t } $$
    Area $$\displaystyle =4\int _{ \dfrac { \pi  }{ 2 }  }^{ 0 }{ a } \sin ^{ 3 }{ t } .\left( -3a\cos ^{ 2 }{ t } \sin { t }  \right) dt$$
    $$\displaystyle =12{ a }^{ 2 }\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \sin ^{ 4 }{ t }  } \cos ^{ 2 }{ t } dt$$
    $$\displaystyle =\dfrac { { 12a }^{ 2 }\dfrac { 5 }{ 2 } !\dfrac { 3 }{ 2 } ! }{ 2\dfrac { 8 }{ 2 } ! } =\dfrac { { 6a }^{ 2 }\times \dfrac { 3 }{ 2 } \times \dfrac { 1 }{ 2 } \times \sqrt { \pi  } .\dfrac { 1 }{ 2 } \sqrt { \pi  }  }{ 3\times 2 } $$
    $$\displaystyle =\dfrac { 3 }{ 8 } { \pi a }^{ 2 }$$
  • Question 6
    1 / -0
    Compute the area of the curvilinear triangle bounded by the y-axis & the curve, $$\displaystyle\ y=\tan x$$ & $$ \displaystyle\ y=(2/3) \cos x$$
    Solution
    For the point of intersection
    $$tan(x)=\dfrac{2}{3}cos(x)$$
    Or 
    $$3tan(x)=2cos(x)$$
    $$3sin(x)=2cos^{2}(x)$$
    Or 
    $$3sin(x)=2-2sin^{2}(x)$$
    Or 
    $$2sin^{2}(x)+3sin(x)-2=0$$
    Hence
    $$sin(x)=\dfrac{-3\pm\sqrt{9+16}}{4}$$

    $$=\dfrac{-3\pm5}{4}$$
    Hence
    $$sin(x)=-2$$ ...(not possible) and $$sin(x)=\dfrac{1}{2}$$
    Hence
    $$x=\dfrac{\pi}{6}$$ , $$x=\dfrac{5\pi}{6}$$.
    Hence the required area will be 
    $$=|\int_{0} ^{\frac{\pi}{6}} tan(x)-\dfrac{2}{3}cos(x)|$$

    $$=ln|sec(x)|-\dfrac{2}{3}sin(x)|_{0} ^{\frac{\pi}{6}}$$

    $$=|ln(\dfrac{2}{\sqrt{3}})-\dfrac{1}{3}|$$

    $$=\dfrac{1}{3}-ln(\dfrac{2}{\sqrt{3}})$$

    $$=\dfrac{1}{3}+ln|\dfrac{\sqrt{3}}{2}|$$ sq units.

  • Question 7
    1 / -0
    If f(x) be an increasing function defined on [a, b] then
    max {f(t) such that $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x)  & min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a) and if f(x) be decreasing function defined on [a, b] then
    max {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a),
    min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x).
    On the basis of above information answer the following questions.
    Let $$\displaystyle f\left ( x \right )=min \left \{ 1, 1-\cos x, 2\sin x \right \}$$ then $$\displaystyle \int_{0}^{\pi}f\left ( x \right )dx$$ is
    Solution
    min $$\left \{ 1, 1-\cos x, 2\sin x\forall 0\leq x\leq \pi  \right \}$$
       $$\displaystyle =\begin{cases}
    1-\cos x &  0\leq x\leq \dfrac{\pi }{2} \\
    1 &  \dfrac{\pi }{2}\leq x\leq \dfrac{5\pi }{6} \\
    2\sin x &  \dfrac{5\pi }{6}\leq x\leq \pi 
    \end{cases}$$
    $$\therefore

    $$   $$\displaystyle \int_{0}^{\pi }f\left ( x \right )dx=\int_{0}^{\pi /2}\left (

    1-\cos x \right )dx+\int_{\pi /2}^{5\pi /6}1dx+\int_{5\pi /6}^{\pi }2\sin

    xdx$$
         $$=\left [ x-\sin x \right ]_{0}^{\pi /2}+\left [ x \right ]_{\pi /2}^{5\pi /6}-2\left [ \cos x \right ]_{5\pi /6}^{\pi }$$
        

    $$\displaystyle =\frac{\pi }{2}-1+\frac{5\pi }{6}-\frac{\pi }{2}-2\left

    [ -1+\frac{\sqrt{3}}{2} \right ]=\frac{5\pi }{6}+1-\sqrt{3}$$

  • Question 8
    1 / -0
    The area of the plane region bounded by the curves $$x+2y^{2}=0$$ and $$x+3y^{2}=1$$ is
    Solution
    Solving the equation $$x+2y^{2}=0$$ & $$3y^{2}+x=1$$
    we get $$A(-2, 1)$$ & $$B(-2, -1)$$
    Required Area $$\displaystyle =2\left [ \int_{0}^{1}xdy-\int_{0}^{1}xdy \right ]$$
       $$\displaystyle =2\int_{0}^{1}\left ( 1-3y^{2}+2y^{2} \right )dy$$
       $$\displaystyle =2\int_{0}^{1}\left ( 1-y^{2} \right )dy$$
       $$\displaystyle =2\left [ y-\frac{y^{3}}{3} \right ]_{0}^{1}=2\left ( 1-\frac{1}{3} \right )=\frac{4}{3}$$ sq.units

  • Question 9
    1 / -0
    Find the area bounded by the curves $$\displaystyle x = y^{2}$$ and $$\displaystyle x = 3-2y^{2}$$
    Solution
    The two curves represent parabolas with vertices at $$\left( 0,0 \right) $$ and $$\left( 3,0 \right) $$
    They intersect at $$\left( 1,1 \right) $$ and $$\left( 1,-1 \right) $$
    So the required area is 
    area of OPMQO $$= 2$$( area of OPMO)
    $$\displaystyle =2\left( \int _{ 0 }^{ 1 }{ \sqrt { x }  } dx+\int _{ 1 }^{ 3 }{ \sqrt { \frac { 3-x }{ 2 }  } dx }  \right) $$

    $$\displaystyle =2\left( \frac { 2 }{ 3 } { x }^{ \frac { 3 }{ 2 }  } \right) _{ 0 }^{ 1 }{ - }\left[ 2\frac { 1 }{ \sqrt { 2 }  } .\frac { 2 }{ 3 } { \left( 3-x \right)  }^{ \frac { 3 }{ 2 }  } \right] _{ 1 }^{ 3 }$$

    $$\displaystyle =2\left[ \frac { 2 }{ 3 } -\left( 0-\frac { 1 }{ \sqrt { 2 }  } \frac { 2 }{ 3 } { 2 }^{ \frac { 3 }{ 2 }  } \right)  \right] =2\left( \frac { 2 }{ 3 } +\frac { 4 }{ 3 }  \right) =4$$

  • Question 10
    1 / -0
    The area bounded by the curves $$y=\log x$$, $$y=\log \left | x \right |$$, $$y=\left | \log x \right |$$ and $$y=\left | \log \left | x \right | \right |$$
    Solution
    Required Area $$=2\int_{0}^{1}\left | \log \left | x \right | \right |dx$$
         $$\displaystyle =2\left [ \left ( x\left | \log \left | x \right | \right | \right ) \right ]_{0}^{1}-\int_{0}^{1}\left ( -\frac{1}{x} \right )xdx$$
         $$=2\left [ \left ( 1-0 \right )+\left ( x \right )_{0}^{1} \right ]=4$$ units

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now