Self Studies

Application of Integrals Test - 56

Result Self Studies

Application of Integrals Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The parabolas $$y^{2}=4x$$ and $$x^{2}=4y$$ divide the square region bounded by the lines $$x=4, y=4$$ and the coordinate axes. If $$S_{1}$$, $$S_{2}$$, $$S_{3}$$ are respectively the areas of these parts numbered from top to bottom; $$S_{1}: S_{2}: S_{3}$$ is
    Solution
    Total area $$=4\times 4=16$$ sq. units
    Area of $$\displaystyle S_{3}=\int_{0}^{4}\frac{x^{2}}{4}dx=\frac{16}{3}=S_{1}$$
    $$\therefore $$   $$\displaystyle S_{2}=16-\frac{16}{3}\times 2=\frac{16}{3}$$
    $$\therefore $$   $$S_{1}:S_{2}:S_{3}$$ is $$1:1:1$$

  • Question 2
    1 / -0
    Let y=f(x) be the given curve and $$x=a$$, $$x=b$$ be two ordinates then area bounded by the curve $$y=f(x)$$, the axis of x between the ordinates $$x=a$$ & $$x=b$$, is given by definite integral
    $$\int_{a}^{b}ydx$$ or $$\int_{a}^{b}f\left ( x \right )dx$$ and the area bounded by the curve $$x=f(y)$$, the axis of y & two abscissae $$y=c$$ & $$y=d$$ is given by $$\int_{c}^{d}xdy$$ or $$\int_{c}^{d}f\left ( x \right )dy$$. Again if we consider two curves $$y=f(x)$$, $$y=g(x)$$ where $$f\left ( x \right )\geq g\left ( x \right )$$ in the interval [a, b] where $$x=a$$ & $$x=b$$ are the points of intersection of these two curves Shown by the graph given
    Then area bounded by these two curves is given by
    $$\int_{a}^{b}\left [ f\left ( x \right )-g\left ( x \right ) \right ]dx$$
    On the basis of above information answer the following questions.

    The area bounded by parabolas $$y=x^{2}+2x+1$$ & $$y=x^{2}-2x+1$$ and the line $$\displaystyle y=\frac{1}{4}$$ is equal to

    Solution
    Given curve is $$y=x^{2}+2x+1=\left ( x+1 \right )^{2}$$          (i)
    is upward parabola with vertex at (-1, 0) meet y-axis at (0, 1) and the curve $$y=x^{2}-2x+1=\left ( x-1 \right )^{2}$$          (ii)
    is also upward parabola with vertex at (1, 0) meet, y-axis at (0, 1)
    Also $$\displaystyle y=\frac{1}{2}$$          (iii)
    A line parallel to x-axis meeting(i) at $$\displaystyle \left ( -\frac{1}{2}, \frac{1}{4} \right )$$, $$\displaystyle \left ( -\frac{3}{2}, \frac{1}{4} \right )$$ & meeting (ii) at $$\displaystyle \left ( \frac{3}{2}, \frac{1}{4} \right )$$, $$\displaystyle \left ( \frac{1}{2}, \frac{1}{4} \right )$$
    Required area is the shaded region given by 2 Area (LTNL) (by symmetry)
         $$\displaystyle =2\int_{0}^{1/2}\left \{ \left ( x-1 \right )^{2}-\frac{1}{4} \right \}dx=2\left [ \frac{\left ( x-1 \right )^{3}}{3}-\frac{x}{4} \right ]_{0}^{1/2}$$
         $$\displaystyle =2\left [ \left ( -\frac{1}{24}-\frac{1}{8} \right )+\left ( \frac{1}{3} \right ) \right ]=2\left [ -\frac{1}{6}+\frac{1}{3} \right ]=\frac{1}{3}$$ square unit

  • Question 3
    1 / -0
    If f(x) be an increasing function defined on [a, b] then
    max {f(t) such that $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x)  & min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a) and if f(x) be decreasing function defined on [a, b] then
    max {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(a),
    min {f(t), $$a\leq t\leq x$$, $$a\leq x\leq b$$}=f(x).
    On the basis of above information answer the following questions.
    $$\int_{0}^{\pi /2}min\left \{ \sin x, \cos x \right \}dx$$ equals
    Solution
    min $$\left \{ \sin x, \cos x \right \}$$ $$\displaystyle \forall 0\leq x\leq \frac{\pi }{2}$$          (from the graph of $$y=\sin x$$,

    $$y=\cos x$$ $$\displaystyle \forall 0\leq x\leq \frac{\pi }{2}$$)
    $$\displaystyle =\begin{cases}
    \sin x &  0\leq x\leq \frac{\pi }{4} \\
    \cos x & \frac{\pi }{4}\leq x\leq \frac{\pi }{2}
    \end{cases}$$
    $$\therefore $$   Required area $$\displaystyle =\int_{0}^{\pi /4}\sin xdx+\int_{\pi /4}^{\pi /2}\cos xdx$$
        

    $$\displaystyle =\left ( -\cos x \right )_{0}^{\pi /4}+\left ( \sin x

    \right )_{\pi /4}^{\pi /2}=\left ( -\frac{1}{\sqrt{2}}+1 \right )+\left (

    1-\frac{1}{\sqrt{2}} \right )$$
         $$=2-\sqrt{2}=\sqrt{2}\left ( \sqrt{2}-1 \right )$$

  • Question 4
    1 / -0
    The  area bounded by $${ y }^{ 2 }+8x=16$$ and $${ y }^{ 2 }-24x=48$$ is $$\displaystyle \frac { a\sqrt { 6 }  }{ c } $$, then $$a+c=$$
    Solution
    The curve $${ y }^{ 2 }+8x=16$$ and $${ y }^{ 2 }-24x=48$$ cuts at $$x=-1$$
    $${ y }^{ 2 }=24\Rightarrow y=\pm \sqrt { 24 } $$
    Required area
    $$\displaystyle =\int _{ -\sqrt { 24 }  }^{ \sqrt { 24 }  }{ \left( { x }_{ 1 }-{ x }_{ 2 } \right) dy } =\int _{ -\sqrt { 24 }  }^{ \sqrt { 24 }  }{ { \left( \left( 2-\frac { { y }^{ 2 } }{ 8 }  \right) -\left( \frac { { y }^{ 2 } }{ 24 } -2 \right)  \right)}dy } $$

    $$\displaystyle =4{ \left[ y \right]  }_{ -\sqrt { 24 }  }^{ \sqrt { 24 }  }-\frac { 1 }{ 18 } { \left[ { y }^{ 3 } \right]  }_{ -\sqrt { 24 }  }^{ \sqrt { 24 }  }$$

    $$=8\sqrt { 24 } -\dfrac { 2 }{ 18 } (24\sqrt { 24 }) $$

    $$\displaystyle =\frac { 16\sqrt { 24 }  }{ 3 } =\frac { 32\sqrt { 6 }  }{ 3 } $$
    Area is given as $$\dfrac{a\sqrt{6}}{c}$$
    $$\Rightarrow a=32, c=3$$
    $$\therefore a+c=32+3=35$$
  • Question 5
    1 / -0
    The area enclosed between the curves $$y=x^3$$ and $$y=\sqrt{x}$$ is (in square units)
    Solution
    $$y=\sqrt { x } $$ or $${ y }^{ 2 }=x\left( y\ge 0 \right) $$ and $$y={ x }^{ 3 }.$$
    We get points of intersection $$(0,0)$$ and $$(1,1)$$
    $$\therefore$$ Required area $$\displaystyle =\int _{ 0 }^{ 1 }{ \left( \sqrt { x } -{ x }^{ 3 } \right)  } dx$$
    $$\displaystyle =\left[ \dfrac { { x }^{ \frac { 3 }{ 2 }  } }{ \frac { 3 }{ 2 }  } -\dfrac { { x }^{ 4 } }{ 4 }  \right] _{ 0 }^{ 1 }=\dfrac{2}{3}-\dfrac{1}{4}=\dfrac { 5 }{ 12 } $$ sq. unit.

  • Question 6
    1 / -0
    Find the area bounded by $$\displaystyle y = \cos ^{-1}x,y=\sin ^{-1}x$$ and $$y-$$axis
    Solution
    $$y=\cos ^{ -1 }{ x } $$ and $$y=\sin ^{ -1 }{ x } $$ intersect at $$P\equiv\displaystyle \left( \frac { 1 }{ \sqrt { 2 }  } ,\frac { \pi  }{ 4 }  \right) $$
    Hence, required area is,
    $$\displaystyle \int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \left( \cos ^{ -1 }{ x } -\sin ^{ -1 }{ x }  \right) dx } =\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \cos ^{ -1 }{ x } dx } -\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \sin ^{ -1 }{ x } dx } $$
    $$\displaystyle ={ \left[ x\cos ^{ -1 }{ x }  \right]  }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }-\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ x.\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx } -{ \left[ x\sin ^{ -1 }{ x }  \right]  }_{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }+\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx }$$ 

    $$\displaystyle ={ \left[ \dfrac1{\sqrt2}\cos ^{ -1 }{\dfrac1{\sqrt2} }  \right]  } -{ \left[ \dfrac1{\sqrt2}\sin ^{ -1 }{ \dfrac1{\sqrt2} }  \right]  }+\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ 2x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx }$$ 

    $$\displaystyle =\int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ 2x.\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } dx }$$ 

    Assuming $$1-x^2 = t^2$$
    Differentiating both sides, we get
    $$-2xdx = 2tdt$$
    Substituting in the integral, we get
    $$\displaystyle =\int _{ \frac { 1 }{ \sqrt { 2 }  }  }^12\ dt$$ 
    $$ =2-\sqrt { 2 } $$
  • Question 7
    1 / -0
    Consider two curves $$\displaystyle C_{1}:y=\frac{1}{x}$$ and $$\displaystyle C_{2}$$ : $$y = \displaystyle lnx$$ on the xy plane Let $$\displaystyle D_{1}$$ denotes the region surrounded by $$\displaystyle C_{1}$$, $$\displaystyle C_{2}$$ and the line $$x = 1$$ and $$\displaystyle D_{2}$$ denotes the region surrounded by $$\displaystyle C_{1}$$, $$\displaystyle C_{2}$$ and the line $$x = a$$ If $$\displaystyle D_{1}$$=$$\displaystyle D_{2}$$ then the value of 'a':
    Solution
    Let the x point of intersection of the two curves be (k)
    $$D1 =  \int _1 ^k (\cfrac{1}{x} - \ln \ \ x)dx$$
    $$D2 = \int _k ^a (- \cfrac{1}{x} \ln \ \ x)dx$$
    $$ D1 +D2 =0$$
    $$\int _1 ^a (\cfrac{1}{x}dx = \int _1 ^a (\ln \ \ x)dx$$
    $$ \ln \ \ a =  a \ \ \ln \ \ a - a +1$$
    $$ (\ln \ \ a -1)(1-a) = 0$$
    $$ a =e$$

  • Question 8
    1 / -0
    Suppose $$y = f(x)$$ and $$y = g(x)$$ are two functions whose graphs intersect at three points $$(0, 4), (2, 2)$$ and $$(4, 0)$$ with $$f(x) > g(x)$$ for $$0 < x < 2$$ and $$f(x) < g(x)$$ for $$2 < x < 4 $$. if $$\displaystyle \int_{0}^{4}\left ( f(x)-g(x) \right )dx=10$$ and $$\displaystyle \int_{2}^{4}\left ( g(x)-f(x) \right )dx=5$$, the area between two curves for $$0 < x < 2$$, is:
    Solution
    $$f(x) > g(x)$$ for $$0 < x < 2$$ and $$f(x) < g(x)$$ for $$2 < x < 4 $$.
     if $$\displaystyle \int_{0}^{4}\left [ f(x)-g(x) \right ]dx=10$$ and $$\displaystyle \int_{2}^{4}\left [ g(x)-f(x)) \right ]dx=5$$,
     $$\displaystyle \int_{0}^{4}\left [ f(x)-g(x) \right ]dx=10$$
     $$\displaystyle \int_{0}^{2} f(x)-g(x) dx + \int_{2}^{4}  f(x)-g(x) dx  =10$$
    $$\displaystyle \int_{0}^{2}  ( f(x)-g(x)) dx + \int_{2}^{4}  ( g(x)-f(x))  dx  =10$$
    $$\displaystyle \int_{0}^{2} ( f(x)-g(x))  dx  =15$$
  • Question 9
    1 / -0
    Area of the region enclosed between the curves $$\displaystyle x=y^{2}-1$$ and $$\displaystyle x = \left | y \right |\sqrt{1-y^{2}}$$ is
    Solution
    Required area is,
    $$\displaystyle A=2\int_{0}^{1}\left [ y\sqrt{1-y^{2}}-\left ( y^{2}-1 \right ) \right ]dy$$
    $$\displaystyle =\left(\frac{-2}{3}\left ( 1-y^{2} \right )^{3/2}\right)_{0}^{1}-\left ( \frac{2y^{3}}{3}-2y \right )^{1}_{0}=2$$

  • Question 10
    1 / -0
    Find the area of the region bounded by the curves $$\displaystyle x=\frac{1}{2},x=2,y=logx$$ and $$y=2^{x}$$
    Solution
    Therefore the required area
    $$\displaystyle =\int _{ \dfrac { 1 }{ 2 }  }^{ 2 }{ \left( { 2 }^{ x }-\log { x }  \right) dx } $$

    $$\displaystyle ={ \left[ \dfrac { { 2 }^{ x } }{ \log { 2 }  } -\left( x\log { x } -x \right)  \right]  }_{ \dfrac { 1 }{ 2 }  }^{ 2 }$$

    $$\displaystyle =\frac { 4-\sqrt { 2 }  }{ \log  2 } -\frac { 5 }{ 2 } \log  2+\frac { 3 }{ 2 } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now