Self Studies

Application of Integrals Test - 57

Result Self Studies

Application of Integrals Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
     Area bounded by $$\displaystyle y=2x-{ x }^{ 2 }$$ & $$\displaystyle (x-1{ ) }^{ 2 }+{ y }^{ 2 }=1$$ in first quadrant, is: 
    Solution

    Area of circle is $$\pi r^2$$
    But here only half circle is in  $$1^{st}$$ quadrant 
    Then, $$A^*=\dfrac{\pi r^2}{2}$$    .......$$( r=1)$$

    $$\Rightarrow A^{*}=\dfrac{\pi}{2}   ......(1)$$

    Now area bounded by parabola $$y=2x-x^2$$ is

    $$A^@=\displaystyle \int_{0}^{2}(2x-x^2)$$

    $$A=\dfrac{4}{3}   ......(2)$$

    Now area bounded by both curves is 
    $$A=A^*-A^@ $$

    $$\Rightarrow A=\dfrac{\pi}{2}-\dfrac{4}{3}$$

  • Question 2
    1 / -0
    In what ratio does the x-axis divide the area of the region bounded by the parabolas $$\displaystyle y=4x-x^{2}$$ and $$\displaystyle y=x^{2}-x$$?
    Solution

  • Question 3
    1 / -0
    For what value of 'a' is the area of the figure bounded by $$\displaystyle y=\frac{1}{x}, y=\frac{1}{2x-1}$$ $$x = 2$$ & $$x = a$$ equal to $$\displaystyle ln\frac{4}{\sqrt{5}}$$?
    Solution
    The required area is 
    $$=\int_{2} ^{a} \dfrac{1}{x}-\dfrac{1}{2x-1}.dx$$

    $$=[lnx-\dfrac{ln(2x-1)}{2}]_{2} ^{a}$$

    $$=[ln\dfrac{x}{\sqrt{2x-1}}]_{2} ^{a}$$

    $$=-ln\dfrac{(2)}{\sqrt{3}}+ln\dfrac{a}{\sqrt{2a-1}}$$

    $$=ln\dfrac{4}{\sqrt{5}}$$

    Hence
    $$ln(\dfrac{a}{\sqrt{2a-1}})=ln\dfrac{4}{\sqrt{5}}+ln\dfrac{(2)}{\sqrt{3}}$$

    $$\Rightarrow ln(\dfrac{a}{\sqrt{2a-1}})=ln\dfrac{8}{\sqrt{15}}$$
    Hence
    $$2a-1=15$$
    Hence
    $$a=8$$.
    Therefore a=8 is one solution.
    Now 
    $$\dfrac{a^{2}}{2a-1}=\dfrac{64}{15}$$

    $$\Rightarrow 15a^{2}=128a-64$$

    $$\Rightarrow 15a^{2}-128a+64=0$$

    Hence $$a=8$$ and $$a=\dfrac{8}{\sqrt{15}}$$
  • Question 4
    1 / -0
    If the area enclosed by the parabolas $$\displaystyle y=a-x^{2}$$ and $$\displaystyle y=x^{2}$$ is $$\displaystyle 18\sqrt {2}$$ sq. units Find the value of 'a'
    Solution
    For the point of intersection
    $$x^{2}=a-x^{2}$$
    $$2x^{2}=a$$
    $$x=\pm\sqrt{\dfrac{a}{2}}$$
    Hence the required area will be 
    $$=\int_{-\sqrt{\frac{a}{2}}} ^{\sqrt{\frac{a}{2}}} x^{2}-(a-x^{2}).dx$$

    $$=\int_{-\sqrt{\frac{a}{2}}} ^{\sqrt{\frac{a}{2}}} 2x^{2}-a.dx$$

    $$=2\int_{0} ^{\sqrt{\frac{a}{2}}} 2x^{2}-a.dx$$

    $$=2[\dfrac{2x^{3}}{3}-ax]_{0} ^{\sqrt{\frac{a}{2}}}$$

    $$=2[\dfrac{2.a\sqrt{a}}{6.\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}]$$

    $$=2[\dfrac{a\sqrt{a}}{3\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}]$$

    $$=18\sqrt{2}$$

    $$|\dfrac{a\sqrt{a}}{3\sqrt{2}}-\dfrac{a\sqrt{a}}{\sqrt{2}}|=9\sqrt{2}$$

    $$\dfrac{2a\sqrt{a}}{3\sqrt{2}}=9\sqrt{2}$$

    $$a\sqrt{a}=27$$

    $$a^{\frac{3}{2}}=3^{3}$$

    $$a=3^{2}$$
    Hence $$a=9$$.
  • Question 5
    1 / -0
    Find the area enclosed between the curves $$\displaystyle y=\log_{e}\left ( x+e \right ), x=\log_{e}\left ( 1/y \right )$$ & the x-axis
    Solution
    Area enclosed 
    $$ = \int _{1-e} ^0  ln(x+e) dx + \int _{0} ^{\infty} e^{-x} dx$$
    $$ =  (xln(x+e) -x)| _{1-e} ^0 -e^{-x} | _{0} ^{\infty}$$
    $$ =2$$

  • Question 6
    1 / -0
    Let $$f(x)$$ be a continuous function given by $$\displaystyle f\left ( x \right )=2x$$ for $$\displaystyle \left | x \right |\leq 1$$ for $$\displaystyle f\left ( x \right )=x^{2}+ax+b$$ for $$\displaystyle \left | x \right |> 1$$. Find the area of the region in the third quadrant bounded by the curves $$\displaystyle x=-2y^{2}$$ and $$y = f(x)$$ lying on the left of the line $$8x + 1 = 0$$
    Solution

  • Question 7
    1 / -0
    Let $$\displaystyle C_{1}$$ & $$\displaystyle C_{2}$$ be two curves passing through the origin as shown in the figure A  curve C is said to "bisect the area" the region between $$\displaystyle C_{1}$$ & $$\displaystyle C_{1}$$ if for each point P of C the two shaded regions A & B shown in the figure have equal areas Determine the upper curve $$\displaystyle C_{2}$$ given that the bisecting curve C has the equation $$\displaystyle y=x^{2}$$ & that the lower curve $$\displaystyle C_{1}$$ has the equation $$\displaystyle y=x^{2}/2$$ 

    Solution
    According to question
    $$\displaystyle \int_{0}^{a^{2}}\left ( -f^{-1}\left ( y \right )+\sqrt{y} \right )\:\:dy=\int_{0}^{a}\left ( x^{2}-\frac{x^{2}}{2} \right )dx$$
    $$\displaystyle \Rightarrow \left [ f^{-1}(a^{2})-a \right ]2a=-\frac{a^{2}}{2}\Rightarrow f^{-1}(a^{2})=\frac{3a}{4}\Rightarrow f\left ( \frac{3a}{4} \right )-a^{2}$$
    or $$\displaystyle f(x)=\frac {16}{9}x^{2}$$

  • Question 8
    1 / -0
    Find the area bounded by $$y = x + sinx$$ and its inverse between $$x = 0$$ and $$x = \displaystyle 2\pi$$
    Solution
    graph of $$x+\sin x $$ and its inverse is shown in the figure which is symmetric with $$y=x$$
    let $$f(x)=x+\sin x$$
    from the figure it is clear that $$A=\int _{ 0 }^{ 2\pi  }{ \left( f\left( x \right) -f^{ -1 }\left( x \right)  \right) dx } =4\int _{ 0 }^{ \pi  }{ \left( f\left( x \right) -x \right) dx } =4\int _{ 0 }^{ \pi  }{ \left( x+\sin { x } -x \right) dx } =8$$

  • Question 9
    1 / -0
    The smaller area enclosed by $$y=f(x)$$, where $$f(x)$$ is polynomial of least degree satisfying $$\displaystyle{ \left[ \lim _{ x\rightarrow 0 }{ 1+\frac { f\left( x \right)  }{ { x }^{ 3 } }  }  \right]  }^{ \tfrac { 1 }{ x }  }=e$$ and the circle $$x^2+y^2=2$$ above the $$x-$$axis is
    Solution
    Since $$\displaystyle\lim _{ x\rightarrow 0 }{ { \left[ 1+\frac { f\left( x \right) }{ { x }^{ 3 } }  \right]  }^{ \tfrac { 1 }{ x }  } } $$ exists, so $$\displaystyle\lim _{ x\rightarrow 0 }{ \frac { f\left( x \right)  }{ { x }^{ 3 } }  } =0$$

    $$\therefore f(x)={ a }_{ 4 }{ x }^{ 4 }+{ a }_{ 5 }{ x }^{ 5 }+...+{ a }_{ n }{ x }^{ n },a_n\neq 0,n\ge 4$$

    Since, $$f(x)$$ is of least degree $$\Rightarrow f(x)={ a }_{ 4 }{ x }^{ 4 }$$ 
    The graph of $$y=x^4$$ and $$x^2+y^2=2$$ are shown in the figure
    $$\therefore$$ The required area $$\displaystyle=2\int _{ 0 }^{ 1 }{ \left( \sqrt { 2-{ x }^{ 2 } } -{ x }^{ 4 } \right)  } dx=\frac { \pi  }{ 2 } +\frac { 3 }{ 5 } $$
  • Question 10
    1 / -0
    The area of the region described by $$\left \{(x, y)/ x^{2} + y^{2} \leq 1\ and\ y^{2} \leq 1 - x\right \}$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now