Self Studies

Application of Integrals Test - 58

Result Self Studies

Application of Integrals Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area (in square units) of the region bounded by the curves $$x=y^2$$ and $$x=3-2y^2$$ is
    Solution
    Required area $$\displaystyle =2\int_0^1(3-2y^2-y^2)dy=6\int_0^1(1-y^2)dy=6\left(y-\dfrac{y^3}{3}\right)_0^1=4$$
    Since given curves are symmetrical about x-axis 

  • Question 2
    1 / -0
    The area (in square units) bounded by the curves $$x\, =\, -2y^2$$ and $$x\, =\, 1-3y^2$$ is
    Solution
    $$x=-2y^2$$

    $$x=1-3y^2$$

    $$-2y^2=1-3y^2\Rightarrow y^2=1\Rightarrow y=\pm 1$$

    Area between the curves $$= A_1-A_2$$

    $$\displaystyle =\int^1_{-1}(1-3y^2+2y^2)dy$$

    $$=\int^1_{-1}(1-y^2)dy$$

    $$=[y-\dfrac{y^3}{3}]^1_{-1}=\dfrac{4}{3}$$
  • Question 3
    1 / -0
    The area of the region bounded by the curves $$x^{2} + y^{2} = 8$$ and $$y^{2} = 2x$$ is
    Solution
    Given curves,
    $$x^{2} + y^{2} = 8$$ .....(i)
    and $$y^{2} = 2x$$ .....(ii)

    On solving Eqs. (i) and (ii), we get
    $$x^{2} + 2x - 8 = 0$$
    $$x^{2} + 4x - 2x - 8 = 0$$
    $$x (x - 4) - 2 (x + 4) = 0$$
    $$(x- 2) (x +4) = 0$$
    $$\therefore x = 2$$ and $$y = \pm 2$$

    $$\therefore$$ Required area
    $$= 2[\text {Area of OAP} + \text {Area of PAB}]$$

    $$= 2\left [\displaystyle\int_{0}^{2} \sqrt {2x} dx + \int_{2}^{2\sqrt {2}} \sqrt {8 - x^{2}} dx \right ]$$

    $$= 2\left [\sqrt {2} \left (x^{3/2} \cdot \dfrac {2}{3}\right )^{2}_{0} + \left (\dfrac {x}{2} \sqrt {8 - x^{2}} + \dfrac {8}{2} \sin^{-1} \dfrac {x}{2\sqrt {2}} \right )_{2}^{2\sqrt {2}} \right ]$$

    $$= 2\left [\dfrac {2\sqrt {2}}{3} (2^{3/2}) + 4\times \dfrac {\pi}{2} - 2 - 4\times \dfrac {\pi}{4}\right ]$$

    $$= 2\left [\dfrac {2\sqrt {2}}{3} \cdot 2\sqrt {2} + 2\pi - 2 - \pi \right ]$$

    $$= 2\left [\dfrac {8}{3} - 2 + \pi \right ] + 2\left (\dfrac {2}{3} + \pi \right ) = 2\pi + \dfrac {4}{3}$$

  • Question 4
    1 / -0
    Area common to the curves $$5x^2  = 0$$ and $$ 2x^2  + 9 = 0$$ is equal to
    Solution
    Given curves 
    $$y=5x^2$$
    $$\Rightarrow x^2=\dfrac{y}{5}$$     ....(1)
    which is a parabola opening upward having vertex at (0,0)

    Other curve is $$2x^2+9=y$$    .....(2)
    $$\Rightarrow x^2=\dfrac{y-9}{2}$$
    which is a parabola having vertex at (0,9).

    Now, solving eqn (1) and (2), we get
    $$5x^2=2x^2+9$$
    $$\Rightarrow 3x^2=9$$
    $$\Rightarrow x=\pm\sqrt{3}$$
    $$\Rightarrow y=15$$
    Point of intersection of the curves is $$(-\sqrt{3},15)$$ and $$(\sqrt{3},15)$$ 

    Required area $$=2(ar OAB)$$
    $$=2 \int ^\sqrt 3 _0 (y_1-y_2)dx$$
    $$= 2 \int ^\sqrt 3 _0 \{ (2x^2 + 9) - 5 x^2\} dx$$
    $$ 2 \int ^\sqrt 3 _ 0 (9-3x^2) dx$$
    $$ = 2 \left( 9x - 3 \displaystyle \frac{x^3}{3}\right) ^\sqrt3 _0$$
    $$ = 2(9 \sqrt 3 - 3 \sqrt 3 ) = 12 \sqrt 3 $$ sq. units

  • Question 5
    1 / -0
    The area of the region, bounded by the curves $$y = \sin^{-1} x + x (1 - x)$$ and $$y = \sin^{-1} x - x (1 - x)$$ in the first quadrant, is
    Solution
    $$\sin^{-1} x$$ is defined, if $$-1 \leq x \leq 1$$
    In first quadrant $$0\leq x\leq 1$$ and $$x(1 - x) \geq 0$$
    $$\therefore y = \sin^{-1} x + x (1 - x)$$ ...... (i)
    Lies above $$y = \sin^{-1} x - x (1 - x)$$ ...... (ii)
    On solving, we get
    $$2x (1 - x) = 0$$
    $$\Rightarrow x = 0, 1$$
    $$\therefore$$ Required area $$=\displaystyle \int_{0}^{1} (y_{1} - y_{2})dx$$
    $$=\displaystyle  \int_{0}^{1} [\left \{\sin^{-1} x + x(1 - x)\right \} - \left \{\sin^{-1} x - x(1 - x) \right \}]dx$$
    $$= 2\displaystyle \int_{0}^{1} (x - x^{2}) dx$$
    $$= 2\left [\dfrac {x^{2}}{2} - \dfrac {x^{3}}{3}\right ]_{0}^{1} = 2\left (\dfrac {1}{2} - \dfrac {1}{3}\right ) = \dfrac {1}{3}$$
  • Question 6
    1 / -0
    If the area bounded by the curves $$y=a{ x }^{ 2 }$$ and $$x=a{ y }^{ 2 }$$, $$(a>0)$$ is $$1$$ sq.units, then the value of $$a$$ is
    Solution
    Points of intersection of $$y=ax^2$$ and $$x=ay^2$$ are $$(0,0)$$ and $$\left (\dfrac {1}{a},\dfrac {1}{a}\right)$$.
    Hence, $$\displaystyle \int _0 ^{\tfrac1a} \left (\sqrt {\dfrac {x}{a}}-ax^2\right)dx=1$$
    $$\Rightarrow \displaystyle\cfrac{2x^{\tfrac32}}{3\sqrt a} \big|_0^{\tfrac1a} - \cfrac{ax^3}3\bigr|_0^{\tfrac1a} =1$$
    $$\Rightarrow \cfrac{2}{3a^2} - \cfrac1{3a^2} =1$$
    $$\Rightarrow \cfrac{1}{3a^2} =1$$
    $$\Rightarrow a=\dfrac {1}{\sqrt3}$$ ....As $$(a>0)$$
  • Question 7
    1 / -0
    Area bounded by curve $$y=x^2$$ and $$y=2-x^2$$ is ?
    Solution
    $$y=x^2$$ and $$y=2-x^2$$

    now both he curve intersect each other ,
    from both the equation 
    $$ x^2=2-x^2$$
    $$ x=+1,-1$$
    now area bounded by both curve is 
    $$A =\displaystyle \int_{-1}^{1}(2-x^2)-\displaystyle \int_{-1}{1}(x^2)$$
    because both are even function hence

    $$A =2[\displaystyle \int_{0}^{1}(2-x^2)-\displaystyle \int_{0}{1}(x^2)$$]

    $$A=2[(2x-\dfrac{x^3}{3})-(\dfrac{x^3}{3})]$$

    now on putting upper and lower value of limit ,we will get 
    $$A=\dfrac{8}{3}$$

  • Question 8
    1 / -0
    The area bounded by the parabolas $$y^2 = 4a(x + a)$$ and $$y^2 = - 4a (x - a)$$  is
    Solution
    $$y^{2}=4a\left ( x+a \right )$$

    $$y=\pm \sqrt{4ax+4a^{2}}$$

    As the area bounded by this curve is in -ve $$x$$ quadrant . Therfore 
    $$y=-\sqrt{-4ax+4a^{2}}$$

    Area bounded by this curve will be $$\int_{-a}^{0}\sqrt{4ax+4a^{2}dx} $$
    Area bounded by this curve will be $$ \dfrac {8}{3} a^{2} $$

    Similarly , The area bounded by $$y^{2}=-4a\left ( x-a \right )$$ curve will be 
    $$\int_{0}^{a}\sqrt{-4ax+4a^{2}dx}$$
    Area =  $$ \dfrac {8}{3} a^{2} $$

    thus , total bounded area will be  $$ \dfrac {16 }{3} a^{2} $$
     


  • Question 9
    1 / -0
    The area of the region bounded by the curves $$y = 2^{x}, y = 2x - x^{2}$$ and $$x = 2$$ is
    Solution
    Given curves are $$y = 2^{x}, y = 2x - x^{2}$$ and $$x = 2$$
    $$\therefore$$ Required area $$= \int_{0}^{2}[2^{x} - (2x - x^{2})]dx$$
    $$= \int_{0}^{2} (2^{x} -2x + x^{2})dx$$
    $$= \left [\dfrac {2^{x}}{\log 2} - x^{2} + \dfrac {x^{3}}{3}\right ]_{0}^{2}$$
    $$= \dfrac {4}{\log 2} - 4 + \dfrac {8}{3} - \dfrac {1}{\log 2}$$
    $$= \dfrac {3}{\log 2} - \dfrac {4}{3}$$.

  • Question 10
    1 / -0
    The area of the portion of the circle $${ x }^{ 2 }+{ y }^{ 2 }=64$$ which is exterior to the parabola $${ y }^{ 2 }=12x$$, is
    Solution
    Required shaded area $$=$$ 

    $$=Area\,  of \,  circle -2\left[ \displaystyle\int _{ 0 }^{ 4 }{ 2\sqrt { 3 } \sqrt { x } dx } +\displaystyle\int _{ 4 }^{ 8 }{ \sqrt { 64-{ x }^{ 2 } } dx }  \right] $$

    $$=64\pi -2\left[ { \left( 2\sqrt { 3 } { x }^{ { 3 }/{ 2 } }\times \dfrac { 2 }{ 3 }  \right)  }_{ 0 }^{ 4 }+{ \left( \dfrac { x }{ 2 } \sqrt { 64-{ x }^{ 2 } } +\dfrac { 64 }{ 2 } \sin ^{ -1 }{ \dfrac { x }{ 8 }  }  \right)  }_{ 4 }^{ 8 } \right] $$

    $$=64\pi -\dfrac { 64 }{ \sqrt { 3 }  } -32\pi +16\sqrt { 3 } +\dfrac { 32\pi  }{ 3 }$$

    $$=\dfrac { 128\pi  }{ 3 } -\dfrac { 16\sqrt { 3 }  }{ 3 } $$

    $$=\dfrac { 16 }{ 3 } \left( 8\pi -\sqrt { 3 }  \right) $$ sq units.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now