Self Studies

Application of Integrals Test - 60

Result Self Studies

Application of Integrals Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the area of the region bounded by the parabola $${ y }^{ 2 }=6(x-1)$$ and $${ y }^{ 2 }=3x$$
    Solution

    Solving $$y^2=6(x-1)$$ and $$y^2=3x$$ we get

    $$6(x-1)=3x$$

    $$\Rightarrow x=2$$ 

    Hence $$y=\pm \sqrt{6}$$

    $$y^2=6(x-1)\Rightarrow x=1+\dfrac{y^2}{6}$$ and

    $$y^2=3x \Rightarrow x=\dfrac{y^2}{3}$$

    Area $$=\int_{-\sqrt{6}}^{\sqrt{6}}\left(1+\dfrac{y^2}{6}-\dfrac{y^2}{3}\right)dy$$

             $$=2\int_{0}^{\sqrt{6}}\left(1-\dfrac{y^2}{6}\right)dy$$

            $$=2\left[y-\dfrac{y^3}{18}\right]_{0}^{\sqrt{6}}$$

            $$=2 \times \dfrac{2\sqrt{6}}{3}=\dfrac{4\sqrt{6}}{3}$$

    Area $$=\dfrac{4\sqrt{6}}{3}$$


  • Question 2
    1 / -0
    Area bounded by the curves $$\displaystyle y = \left[ \frac{x^2}{64} + 2 \right]$$ ([.] denotes the greatest integer function) $$y = x - 1$$ and $$x = 0$$ above the x-axis is
  • Question 3
    1 / -0
    The area bounded by the curves $$x= a \cos^3t, y= a \sin^3 t$$ is 
    Solution
    $$x=a\cos^{3}t$$   ,  $$y=a\sin^{2}t$$
    $$x^{\dfrac{2}{3}}+y^{\dfrac{2}{3}}=a^{\dfrac{2}{3}}$$
    $$A=\int_{0}^{2\pi}{x}dy$$
    $$A=a^{2}\int_{0}^{2\pi}{\cos^{3}t\times3\sin^{2}t\times\cos t}dt$$
    $$=3a^{2}\int_{0}^{2\pi}{\cos^{2}t\times\sin^{2}t}dt$$      $$\rightarrow(1)$$
    similarily   $$A=\int_{0}^{2\pi}{y}dx$$
    $$=3a^{2}\int_{0}^{2\pi}{\sin^{2}t\times\cos^{2}t}dt$$        $$\rightarrow(2)$$
    Adding (1) and (2)
    $$2A=3a^{2}\int_{0}^{2\pi}{\cos^{2}t\times\sin^{2}t}dt
    $$A=\dfrac{3a^{2}}{8}\int_{0}^{2\pi}{\sin^{2}2}dt$$    $$\rightarrow(3)$$
    Similarily  $$A=\dfrac{3a^{2}}{8}\int_{0}^{2\pi}{\cos^{2}t}dt$$       $$\rightarrow(4)$$
    By putting $$t=t+\dfrac{\pi}{4}$$ in (3)
    Adding (3) and (4)
    $$2A=\dfrac{3a^{2}}{8}\int_{0}^{2\pi}{dt}$$
    $$A=\dfrac{3a^{2}}{8}\pi$$

  • Question 4
    1 / -0
    $$Let\quad f(x)=2-\left| x-1 \right| and\quad g(x)={ \left( x-1 \right)  }^{ 2 },\quad then\quad $$
    Solution
    Area of parabola w.r.t x axis $$=g(X)$$
    $$\int_{0}^{2}{(x-1)^{2}dx}$$
    $$\Rightarrow$$$$\left[\dfrac{(x-1)^{3}}{3}\right]_{0}^{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{2}{3}$$
    Area of $$f(x)$$
    $$=2\times1+\dfrac{1}{2}\times2\times1$$
    $$\Rightarrow$$  $$2+1=3$$
    Area bounded by $$f(x)$$ and $$g(x)$$
    $$=3-\dfrac{2}{3}=\dfrac{7}{3}$$

  • Question 5
    1 / -0
    The area bounded by $$y=\sin ^{ -1 }{ x } , y=\cos ^{ -1 }{ x }$$ and the $$x-axis$$, is given by
  • Question 6
    1 / -0
    The area bounded by the curves $$y={ \left( x-1 \right)  }^{ 2 },y={ \left( x+1 \right)  }^{ 2 }$$ and $$y=\dfrac { 1 }{ 4 }$$ is 
  • Question 7
    1 / -0
    Area common to the circle $$x^{2}+y^{2}=64$$ and the parabola $$y^{2}=4x$$ is
  • Question 8
    1 / -0
    If $$f\left(x\right)=$$max$$\left\{\sin{x},\cos{x},\dfrac{1}{2}\right\}$$, then the area of the region bounded by the curves $$y=f\left(x\right),x-$$axis $$y-$$axis and $$x=2\pi$$ is
    Solution
    $$\because f\left(x\right)=$$max$$\left\{\sin{x},\cos{x},\dfrac{1}{2}\right\}$$
    Interval value of $$f\left(x\right)$$
    For $$0\le x<\dfrac{\pi}{4}, \cos{x}$$
    For $$\dfrac{\pi}{4}\le x<\dfrac{5\pi}{6}, \sin{x}$$
    For $$\dfrac{5\pi}{6}\le x<\dfrac{5\pi}{3}, \dfrac{1}{2}$$
    For $$\dfrac{5\pi}{3}\le x<2\pi, \cos{x}$$
    Hence, required area
    $$=\int_{0}^{\frac{\pi}{4}}{\cos{x}dx}+\int_{\frac{\pi}{4}}^{\frac{5\pi}{6}}{\sin{x}dx}+\int_{\frac{5\pi}{6}}^{\frac{5\pi}{3}}{\dfrac{1}{2}dx}+\int_{\frac{5\pi}{3}}^{2\pi}{\cos{x}dx}$$
    $$=\left[\sin{x}\right]_{0}^{\frac{\pi}{4}}-\left[\cos{x}\right]_{\frac{\pi}{4}}^{\frac{5\pi}{6}}+\dfrac{1}{2}\left[x\right]_{\frac{5\pi}{6}}^{\frac{5\pi}{3}}+\left[\sin{x}\right]_{\frac{5\pi}{3}}^{2\pi}$$
    $$=\left(\dfrac{1}{\sqrt{2}}-0\right)-\left(-\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}\right)+\dfrac{1}{2}\left(\dfrac{5\pi}{3}-\dfrac{5\pi}{6}\right)+\left(0+\dfrac{\sqrt{3}}{2}\right)$$
    On simplification, we get
    $$=\left(\dfrac{5\pi}{12}+\sqrt{2}+\sqrt{3}\right)$$.sq.unit.

  • Question 9
    1 / -0
    The parabola $$y=\dfrac{x^2}{2}$$ divides the circle $$x^2+y^2=8$$ into two parts. Find the area of both parts.
    Solution
    Let us first find the x-values of the points of intersection using the given equations of parabola $$y=\dfrac {x^2}{2}$$ and circle $$x^2+y^2=8$$ as follows:

    $$x^{ 2 }+y^{ 2 }=8\\ \Rightarrow x^{ 2 }+\left( \dfrac { x^{ 2 } }{ 2 }  \right) ^{ 2 }=8\quad \quad \quad \quad \quad \left( \because \quad y=\dfrac { x^{ 2 } }{ 2 }  \right) \\ \Rightarrow x^{ 2 }+\frac { x^{ 4 } }{ 4 } =8\\ \Rightarrow 4x^{ 2 }+x^{ 4 }=32$$
    $$\Rightarrow x^{ 4 }+4x^{ 2 }-32=0\\ \Rightarrow x^{ 4 }+8x^{ 2 }-4x^{ 2 }-32=0\\ \Rightarrow x^{ 2 }(x^{ 2 }+8)-4(x^{ 2 }+8)=0\\ \Rightarrow (x^{ 2 }-4)(x^{ 2 }+8)=0\\ \Rightarrow (x^{ 2 }-4)=0,\quad (x^{ 2 }+8)=0\\ \Rightarrow x^{ 2 }=4,\quad x^{ 2 }=-8\\ \Rightarrow x=\pm \sqrt { 4 } \\ \Rightarrow x=\pm 2$$

    Let $$A_1$$ be the area of the region inside the circle and above the parabola and $$A_2$$ be the area of the region inside the circle and below the parabola. Then we have,

    $${ A }_{ 1 }=\int _{ -2 }^{ 2 }{ \left( \sqrt { 8-{ x }^{ 2 } } -\dfrac { 1 }{ 2 } { x }^{ 2 } \right)  } dx\\ =2\int _{ 0 }^{ 2 }{ \left( \sqrt { 8-{ x }^{ 2 } } -\dfrac { 1 }{ 2 } { x }^{ 2 } \right)  } dx\\ =2\left[ \dfrac { 1 }{ 2 } \times 8\sin ^{ -1 }{ \left( \dfrac { 2 }{ \sqrt { 8 }  }  \right)  } +\dfrac { 1 }{ 2 } \times 2\sqrt { 8-{ 2 }^{ 2 } } -\dfrac { 1 }{ 2 } { \left[ \dfrac { 1 }{ 3 } { x }^{ 3 } \right]  }_{ 0 }^{ 2 } \right] \\ =8\sin ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  } +2\sqrt { 4 } -\dfrac { 8 }{ 3 }$$
    $$=8\times \dfrac { \pi  }{ 4 } +4-\dfrac { 8 }{ 3 } \\ =2\pi +\dfrac { 4 }{ 3 }$$

    We know that the area of the circle is $$\pi r^2$$, therefore the area of the circle $$x^2+y^2=8$$ with radius $$r=\sqrt {8}$$ is:

    $$\pi \left( \sqrt { 8 }  \right) ^{ 2 }=8\pi$$

    Thus, we have

    $$A_{ 2 }=8\pi -\left( 2\pi +\dfrac { 4 }{ 3 }  \right) =6\pi -\dfrac { 4 }{ 3 }$$

    Hence, the area of parabola and circle is $$2\pi +\dfrac { 4 }{ 3 }$$ and $$6\pi -\dfrac { 4 }{ 3 }$$ respectively.
  • Question 10
    1 / -0
    The area of the region lying between the line x-y+2=0 and the curve x=$$\sqrt y $$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now