Let us first find the x-values of the points of intersection using the given equations of parabola $$y=\dfrac {x^2}{2}$$ and circle $$x^2+y^2=8$$ as follows:
$$x^{ 2 }+y^{ 2 }=8\\ \Rightarrow x^{ 2 }+\left( \dfrac { x^{ 2 } }{ 2 } \right) ^{ 2 }=8\quad \quad \quad \quad \quad \left( \because \quad y=\dfrac { x^{ 2 } }{ 2 } \right) \\ \Rightarrow x^{ 2 }+\frac { x^{ 4 } }{ 4 } =8\\ \Rightarrow 4x^{ 2 }+x^{ 4 }=32$$
$$\Rightarrow x^{ 4 }+4x^{ 2 }-32=0\\ \Rightarrow x^{ 4 }+8x^{ 2 }-4x^{ 2 }-32=0\\ \Rightarrow x^{ 2 }(x^{ 2 }+8)-4(x^{ 2 }+8)=0\\ \Rightarrow (x^{ 2 }-4)(x^{ 2 }+8)=0\\ \Rightarrow (x^{ 2 }-4)=0,\quad (x^{ 2 }+8)=0\\ \Rightarrow x^{ 2 }=4,\quad x^{ 2 }=-8\\ \Rightarrow x=\pm \sqrt { 4 } \\ \Rightarrow x=\pm 2$$
Let $$A_1$$ be the area of the region inside the circle and above the parabola and $$A_2$$ be the area of the region inside the circle and below the parabola. Then we have,
$${ A }_{ 1 }=\int _{ -2 }^{ 2 }{ \left( \sqrt { 8-{ x }^{ 2 } } -\dfrac { 1 }{ 2 } { x }^{ 2 } \right) } dx\\ =2\int _{ 0 }^{ 2 }{ \left( \sqrt { 8-{ x }^{ 2 } } -\dfrac { 1 }{ 2 } { x }^{ 2 } \right) } dx\\ =2\left[ \dfrac { 1 }{ 2 } \times 8\sin ^{ -1 }{ \left( \dfrac { 2 }{ \sqrt { 8 } } \right) } +\dfrac { 1 }{ 2 } \times 2\sqrt { 8-{ 2 }^{ 2 } } -\dfrac { 1 }{ 2 } { \left[ \dfrac { 1 }{ 3 } { x }^{ 3 } \right] }_{ 0 }^{ 2 } \right] \\ =8\sin ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 2 } } \right) } +2\sqrt { 4 } -\dfrac { 8 }{ 3 }$$
$$=8\times \dfrac { \pi }{ 4 } +4-\dfrac { 8 }{ 3 } \\ =2\pi +\dfrac { 4 }{ 3 }$$
We know that the area of the circle is $$\pi r^2$$, therefore the area of the circle $$x^2+y^2=8$$ with radius $$r=\sqrt {8}$$ is:
$$\pi \left( \sqrt { 8 } \right) ^{ 2 }=8\pi$$
Thus, we have
$$A_{ 2 }=8\pi -\left( 2\pi +\dfrac { 4 }{ 3 } \right) =6\pi -\dfrac { 4 }{ 3 }$$
Hence, the area of parabola and circle is $$2\pi +\dfrac { 4 }{ 3 }$$ and $$6\pi -\dfrac { 4 }{ 3 }$$ respectively.