Self Studies

Application of Integrals Test - 62

Result Self Studies

Application of Integrals Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The whole area of the curves $$x=a\cos^3t, y=b\sin^3t$$ is given by?
    Solution
    $$x=a{ \cos }^{ 3 }\theta $$
    $$y=b{ \sin }^{ 3 }\theta $$
    To get the area,
    $$A=\int _{ 0 }^{ 2x }{ x } dy$$
        $$=\int _{ 0 }^{ 2\pi  }{ a } { \cos }^{ 3 }\theta 3b{ \sin }^{ 2 }\theta \cos\theta d\theta $$
        $$=3ab\int _{ 0 }^{ 2\pi  }{ { \sin }^{ 2 }\theta { \cos }^{ 4 }\theta  } d\theta \quad \longrightarrow \left( 1 \right) $$
    Substituting $$\theta \rightarrow \theta +\pi /2$$ in $$1$$,
    $$A=3ab\int _{ 0 }^{ 2\pi  }{ { \cos }^{ 2 }\theta { \sin }^{ 4 }\theta  } d\theta \quad \longrightarrow \left( 2 \right) $$
    Adding $$(1)$$ and $$(2)$$
    $$2A=3ab\int _{ 0 }^{ 2\pi  }{ { \cos }^{ 2 }\theta  } { \sin }^{ 2 }\theta d\theta \quad \longrightarrow \left( 3 \right) $$
                                    $$\left\{ { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1 \right\} $$
    Multiplying $$(3)$$ by $$(4)$$
    $$8A=3ab\int _{ 0 }^{ 2\pi  }{ { \sin }^{ 2 }2\theta  } d\theta \quad \longrightarrow \left( 4 \right) $$
    Substituting $$\theta \rightarrow \theta +\pi /4$$ in $$(4)$$
    $$8A=3ab\int _{ 0 }^{ 2\pi  }{ { \cos }^{ 2 }2\theta  } d\theta \quad \longrightarrow \left( 5 \right) $$
    Adding $$(4)$$ and $$(5)$$
    $$16A=3ab\int _{ 0 }^{ 2\pi  }{ 1 } d\theta $$
             $$=6ab\pi $$
        $$A=\dfrac { 3\pi ab }{ 8 } $$
  • Question 2
    1 / -0
    The area between the curves y=tan x, cot x and axis in the interval $$\left[0,\pi   \right/2$$]is ?
    Solution
    $$y=tanx,y=cotx$$ are symmetrical about $$x=\frac { \pi  }{ 4 } $$,where they intersect

    $$\frac { \pi  }{ 4 } Req Area=2|∫tanxdx|$$ 

    $$\frac { \pi  }{ 4 } |2∫cotxdx|=2\times \left| \left( lnsec\frac { \pi  }{ 4 }  \right) -lnsec0 \right| $$

    $$\frac { \pi  }{ 22 } \times |ln\sqrt { 2 } -0|=2\times \frac { 1 }{ 2 } \times ln2=ln2$$
  • Question 3
    1 / -0
    The area bounded by the curves $$y = \sin \left( {x - \left[ x \right]} \right),\,y = \sin 1$$ and the x-axis is
    Solution

  • Question 4
    1 / -0
    The area (in square units) bounded by the curves $$y = {\cos ^{ - 1}}\left| {\cos \,x} \right|$$ and $$y = {\left( {{{\cos }^{ - 1}}\left| {\cos \,x} \right|} \right)^2},x \in \left[ {0,\pi } \right]$$ is
    Solution

  • Question 5
    1 / -0
    The area bounded by the curves $$y = sin^{-1} |sin \, x| $$ and $$y = (sin^{-1} | sin \, x|)^2 , \, 0 \le x \le 2 \pi$$ is
    Solution
    $$y=\sin ^{-1}|\sin n |$$ and $$y=(\sin ^{-1}|\sin n|^2)^2$$
    Required area $$=4\int_{1}^{0}[x-(\sin^{-1}(\sin n))^2]dn+4\int_{\dfrac{\pi}{1}}^{1}[(\sin^{-1}(\sin n))^2-n]dn$$
    $$=4\left(\dfrac{1}{2}\right)-4\int_{1}^{0}(\sin ^{-1}(\sin x))^2dn+4\int_{\dfrac{\pi}{2}}^{1}(\sin ^{-1}(\sin n))^2dn-\dfrac{4}{2}\left(\dfrac{\pi^2}{4}-1\right)^1$$
    $$=4-\dfrac{\pi}{2}-4\int_{1}^{0}(\sin ^{-1}(\sin n))^2dn +4\int_{\dfrac{\pi}{2}}^{0}(\sin ^{-1}(\sin n))^2dn$$
    $$=4-\dfrac{\pi^2}{2}-4\int_{1}^{0}n^2dn+4\int_{\dfrac{\pi}{2}}^{1}n^2dn$$
    $$=4-\dfrac{\pi^2}{2}-\dfrac{4}{3}+\dfrac{4}{3}\left[\dfrac{\pi^3}{8}-1^1\right]$$
    $$=4-\dfrac{\pi^2}{2}-\dfrac{8}{3}+\dfrac{\pi^3}{6}$$
    $$=\boxed{\left(\dfrac{4}{3}-\dfrac{\pi^2}{2}+\dfrac{\pi^3}{6}\right)sq\, unit}$$

  • Question 6
    1 / -0
    The area bounded by the curves $${y^2} = 4x$$ and $${x^2} = 4y$$ is : 
    Solution
    $$x^2=4y$$                                $$y^2=4x$$
    $$x=2\sqrt{y}$$                            $$=4\times 2\sqrt{y}$$
                                                $$y^2=8\sqrt{y}$$
    $$\Rightarrow y^4-8y=0$$
    then $$y=0, 4$$
    $$x^2=4y$$
    we get $$x=4, 0$$
    So, the points of intersection are $$(0, 0)$$ & $$(4, 4)$$
    Area $$=\displaystyle\int^4_0\displaystyle\int^{x^2/4}_{2\sqrt{x}}dydx=\displaystyle\int^4_0[y]^{x^2/4}_{2\sqrt{x}}dx$$
    $$=\displaystyle\int^4_0\left[\dfrac{x^2}{4}-2\sqrt{x}\right]dx$$
    $$=\left[\dfrac{x^3}{12}-\dfrac{4}{3}\cdot x^{3/2}\right]^4_0$$
    $$=\left[\dfrac{4^3}{12}-\dfrac{4}{3}(4)^{3/2}\right]$$
    $$=\dfrac{16}{3}$$ sq. units.
  • Question 7
    1 / -0
    The area bounded by $$y=2-\left| 2-x \right|$$ and $$y=\frac { 3 }{ \left| x \right|  }$$ is :
    Solution
    $$y=2-\left|2-x\right|$$ $$y=\dfrac{3}{\left|x\right|}$$
    $$1$$ can be rewriiten as $$y=x if x<+2$$
    On solving these two equation, we get
    $$x=\sqrt{3}$$ and $$x=3$$
    $$Area=\displaystyle \int_{\sqrt{3}}^{3}{\left({y}_{1}-{y}_{2}\right)}dx$$
    $$=\displaystyle \int_{\sqrt{3}}^{3}{\left(2-\left|2-x\right|\right)}-\dfrac{3}{\left|x\right|}dx$$
    $$=\displaystyle \int_{\sqrt{3}}^{2}{x-\dfrac{3}{\left|x\right|}+\int_{2}^{3}{4-x-\dfrac{3}{\left|x\right|}}}dx$$
    $${\left[\dfrac{{x}^{2}}{2}-3\log_{e}{x}\right]}_{\sqrt{3}}^{2}+{\left[4x-\dfrac{{x}^{2}}{2}-3\log_{e}{x}\right]}_{2}^{3}$$
    $$=\dfrac{1}{2}+3\log_{e}{\dfrac{\sqrt{3}}{2}}+12-\dfrac{9}{2}-3\log_{e}{3}-8+2+3\log_{e}{2}$$
    $$=\dfrac{1}{2}+3\ln{\dfrac{\sqrt{3}}{2}}+\dfrac{3}{2}3\ln{\dfrac{2}{3}}$$
    $$2+3\ln{\dfrac{\sqrt{3}}{2}}=2-3\ln{\sqrt{3}}=\dfrac{4-3\ln{3}}{2}$$

  • Question 8
    1 / -0
    Area of the region defined by $$1\ \le |x|+|y|$$ and $$x^{2}-2x+1 \le 1-y^{2}$$ is $$k \pi$$ then $$k=.....sq$$ units 
    Solution

  • Question 9
    1 / -0
    The maximum area bounded by the curves $${y^2} = 4ax,\,\,\,\,y = ax\,\,a$$ and $$y = \frac{x}{a}\,\,,1 \le a \le 2$$  is 
    Solution

  • Question 10
    1 / -0
    Consider two curves $${C_1}\,:\,y = \frac{1}{x}\,and\,{C_2}:\,y = \,\ell nx$$  on the $$xy$$ plane. Let $${D_1}$$ denotes the region surrounded by $${C_1},{C_2}$$ and the lines $$x=1$$  and $${D_2}$$ denotes the region the region surrounded by $${C_1},{D_2}$$ and the line $$x=a$$. If a $${D_1}={D_2}$$ then the value of $$'a'$$ -
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now