$$x=a{ \cos }^{ 3 }\theta $$
$$y=b{ \sin }^{ 3 }\theta $$
To get the area,
$$A=\int _{ 0 }^{ 2x }{ x } dy$$
$$=\int _{ 0 }^{ 2\pi }{ a } { \cos }^{ 3 }\theta 3b{ \sin }^{ 2 }\theta \cos\theta d\theta $$
$$=3ab\int _{ 0 }^{ 2\pi }{ { \sin }^{ 2 }\theta { \cos }^{ 4 }\theta } d\theta \quad \longrightarrow \left( 1 \right) $$
Substituting $$\theta \rightarrow \theta +\pi /2$$ in $$1$$,
$$A=3ab\int _{ 0 }^{ 2\pi }{ { \cos }^{ 2 }\theta { \sin }^{ 4 }\theta } d\theta \quad \longrightarrow \left( 2 \right) $$
Adding $$(1)$$ and $$(2)$$
$$2A=3ab\int _{ 0 }^{ 2\pi }{ { \cos }^{ 2 }\theta } { \sin }^{ 2 }\theta d\theta \quad \longrightarrow \left( 3 \right) $$
$$\left\{ { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1 \right\} $$
Multiplying $$(3)$$ by $$(4)$$
$$8A=3ab\int _{ 0 }^{ 2\pi }{ { \sin }^{ 2 }2\theta } d\theta \quad \longrightarrow \left( 4 \right) $$
Substituting $$\theta \rightarrow \theta +\pi /4$$ in $$(4)$$
$$8A=3ab\int _{ 0 }^{ 2\pi }{ { \cos }^{ 2 }2\theta } d\theta \quad \longrightarrow \left( 5 \right) $$
Adding $$(4)$$ and $$(5)$$
$$16A=3ab\int _{ 0 }^{ 2\pi }{ 1 } d\theta $$
$$=6ab\pi $$
$$A=\dfrac { 3\pi ab }{ 8 } $$