Self Studies

Application of Integrals Test - 68

Result Self Studies

Application of Integrals Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by the curves $$y = x e ^ { x } , y = x e ^ { - x }$$ and the line $$x = 1 ,$$ is
    Solution

  • Question 2
    1 / -0
    The area enclosed by the curve $$\left[x+3y\right]=\left[x-2\right]$$ where $$x\epsilon\left[3,4\right)$$ is (where $$[.]$$ denotes greatest integer function.)
    Solution


    $$\text { Given that: } \\$$
    $$\qquad[x+3 y]=[x-2] \text { where } x \in[3,4) \\$$
    $$x \in[3,4)$$

    $$\therefore x-2 \in[1,2) \\$$
    $$\therefore(x-2)=1$$

    So,
    $$[x+3 y]=1$$

    that is for,
    $$1 \leq x+3 y<2 \quad \& \quad 3 \leq x<4 \\$$
    $$\frac{1-x}{3} \leq y<\frac{2-x}{3} \quad \& \quad 3 \leqslant x<4$$

    $$\therefore \frac{1-x}{3} \leq y $$ & $$ y<\frac{2-x}{3} $$ & $$3 \leqslant x<4$$

    $$\therefore x+3 y \geqslant 1 \quad \& \quad x+3 y<2$$
    $$\& \quad 3 \leqslant x<4$$

    The plot is as follows:

    $$\therefore \text { Area }=\text { Area of } A B C D \text { - Area of } \triangle A B P \\$$
    $$\text { - Area of } \triangle Q C D \\$$

    = $$1\left(\frac{2}{3}\right)-\frac{1}{2}\left(\frac{1}{3}\right)-\frac{1}{2}\left(\frac{1}{3}\right) \\$$
    $$=\frac{2}{3}-\frac{1}{3}$$

    $$\text { doired Area } =\frac{1}{3} \text { sq. units }$$

  • Question 3
    1 / -0
    Area bounded by the parabola $${ x }^{ 2 }=36y$$ and its latus rectum is 
    Solution

  • Question 4
    1 / -0
    The area of the closed figure bounded by $$y = x , y = - x \&$$ the tangent to the curve $$y = \sqrt { x ^ { 2 } - 5 }$$ at the point $$( 3,2 )$$ is:
    Solution

  • Question 5
    1 / -0
    Area of region bounded by $$[x]^2=[y]^2$$ if $$x\in [1,5]$$ where [.] represents the greatest integer function is-
  • Question 6
    1 / -0
    If $$\left[ \begin{array} { c c c } { 4 a ^ { 2 } } & { 4 a } & { 1 } \\ { 4 b ^ { 2 } } & { 4 b } & { 1 } \\ { 4 c ^ { 2 } } & { 4 c } & { 1 } \end{array} \right] \left[ \begin{array} { c } { f ( - 1 ) } \\ { f ( 1 ) } \\ { f ( 2 ) } \end{array} \right] = \left[ \begin{array} { c } { 3 a ^ { 2 } + 3 a } \\ { 3 b ^ { 2 } + 3 b } \\ { 3 c ^ { 2 } + 3 c } \end{array} \right]$$  $$f ( x )$$  is a quadratic function and its maximum value occurs at a point  $$V. A$$  is a point of intersection of  $$y = f ( x )$$  with  $$x$$ -axis and point  $$B$$  is such that chord  $$AB$$  subtends a right angled at  $$V .$$  Find The area enclosed by  $$f ( x )$$  and chord  $$A B .$$
    Solution
    Hence, Option (A) is the correct answer.

  • Question 7
    1 / -0
    If the area between the curves y=kx2 and x=ky2 is 1 
    then k is 

  • Question 8
    1 / -0
    The area between the parabola $${ y }^{ 2 }=4x$$, normal at one end of latusreetum and X-axis sin sq. units is
    Solution

  • Question 9
    1 / -0
    Area bounded by Curve $${ y }^{ 2 }=4x,y$$ axis and line y=3 is : 
  • Question 10
    1 / -0
    If $${ A }_{ n }$$ is the area bounded by y=x and y=$${ x }^{ n },n\epsilon N$$, then $${ A }_{ 2. }.{ A }_{ 3 }...{ A }_{ n }=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now