Self Studies

Differential Equations Test - 17

Result Self Studies

Differential Equations Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$ \displaystyle \frac{dy}{dx}=(1+y^{2})(1+x^{2})^{-1}$$ is
    Solution
    $$ \displaystyle \frac{dy}{dx}=\frac{(1+y^{2})}{(1+x^{2})}$$
    $$ \displaystyle \Rightarrow \int \frac{dy}{1+y^{2}}=\int \frac{dx}{1+x^{2}}+c_{1}$$
    $$\Rightarrow tan^{-1}{y}=tan^{-1}x+c_{1}$$
    $$\Rightarrow \displaystyle tan^{-1}(\frac{y-x}{1+xy})=c_{1}$$
    $$\displaystyle \Rightarrow tan\ c_{1}=(\frac{y-x}{1+xy})$$
    $$let \ tan\ c_{1}=c$$
    $$ \displaystyle \Rightarrow c=\frac{y-x}{1+xy}$$
    $$ \displaystyle \Rightarrow y-x=(1+xy)c$$
  • Question 2
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{x+x^{2}}{y+y^{2}}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{x+x^{2}}{y+y^{2}}$$

    $$\Rightarrow \int (y+y^{2})dy=\int (x+x^{2})dx+c$$

    $$\Rightarrow \dfrac{y^{2}}{2}+\dfrac{y^{3}}{3}=\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}+c$$

    $$\Rightarrow 3y^{2}+2y^{3}=3x^{2}+2x^{3}+c$$

    $$\Rightarrow 3(x^{2}-y^{2})+2(x^{3}-y^{3})+c=0$$
  • Question 3
    1 / -0
    The solution of $$y\dfrac{dy}{dx}=1+y^{2}$$ is:
    Solution
    $$y\dfrac{dy}{dx}=1+y^{2}$$
    $$\Rightarrow \dfrac{2y dy}{1+y^{2}}=2dx$$
    Let$$1+y^{2}= t \Rightarrow 2ydy=dt$$
    $$\Rightarrow \dfrac{dt}{t}=2dx$$
    $$\Rightarrow log t = 2x +c$$
    $$\Rightarrow log (1+y^{2})=2x+c$$
  • Question 4
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\tan x $$ is
    Solution
    $$\dfrac{dy}{dx}=tanx$$

    $$dy=tanx.dx$$

    $$dy=\dfrac{sinx}{cosx}.dx$$

    Let $$cosx=t$$
    Then
    $$sinx.dx=-dt$$

    Hence

    $$dy=\dfrac{-1}{t}dt$$

    $$\int dy =\int \dfrac{-dt}{t}$$

    $$y=-lnt+lnC$$

    $$y=-ln(cosx)+lnC$$

    $$y=ln(secx)+lnC$$

    $$y=lnCsecx$$

    $$e^{y}=C.secx$$
  • Question 5
    1 / -0
    The solution of $$x^{2}dy-y^{2}dx=0$$ is:
    Solution
    Given, $$x^{2}dy-y^{2}dx=0$$
    $$\Rightarrow \dfrac{dy}{y^{2}}=\dfrac{dx}{x^{2}}$$
    $$\Rightarrow \dfrac{ -1 }{y} = \dfrac{ -1 }{x} +c$$
    $$\Rightarrow \dfrac { 1 }{ x } -\dfrac { 1 }{ y } =c$$
  • Question 6
    1 / -0
    The solution of $$\displaystyle \dfrac{dy}{dx}=2y\tanh x $$ is
    Solution
    $$\dfrac{dy}{dx}=2 y \tan hx$$
    $$\Rightarrow \int \dfrac{dy}{y}= 2 \int \tan hx dx$$
    $$\Rightarrow \log y = 2 \log(\cos hx)-\log c$$
    $$\Rightarrow \log cy=\log \cosh^2x$$
    $$cy=\cosh^2x$$
  • Question 7
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$$

    $$\dfrac{dy}{1+y}=\dfrac{dx}{1-x}$$

    which is variable seprable form

    take integration both side

     we get,

    $$\Rightarrow \log(1+y)=-\log(1-x)+logc$$

    $$\log(1+y)(1-x)=logc$$

    $$\Rightarrow (1+y)(1-x)=c$$
  • Question 8
    1 / -0
    The solution of $$\dfrac{dy}{dx}+\dfrac{x^{2}}{y^{2}}=0$$ is:
    Solution
    $$\dfrac{dy}{dx}=-\dfrac { { x }^{ 2 } }{ { y }^{ 2 } } $$
    $$\Rightarrow y^{2}dy=-x^{2}dx$$
    $$\Rightarrow \dfrac{y^{3}}{3}=\dfrac{-x^{3}}{3}+c$$
    $$\Rightarrow x^{3}+y^{3}=c$$
  • Question 9
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}=e^{\displaystyle (y-x)}$$ is
    Solution
    $$\dfrac{dy}{dx}=\dfrac{e^{y}}{e^{x}}$$
    $$\dfrac{dy}{e^{y}}=\dfrac{dx}{e^{x}}$$
    $$\Rightarrow \dfrac{e^{-y}}{-1}=\dfrac{e^{-x}}{-1}+c$$
    $$\Rightarrow e^{-x}=e^{-y}+c$$
  • Question 10
    1 / -0
    The solution of $$\dfrac{dy}{dx}+y=1$$ is:
    Solution
    $$\dfrac{dy}{dx}+y=1$$

    $$\dfrac{dy}{dx}=1-y$$

    $$\Rightarrow \dfrac{dy}{1-y}=dx$$

    $$\Rightarrow - \log(1-y)=x+c$$
    $$\Rightarrow x+\log \left | 1-y \right |=c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now