Self Studies

Differential Equations Test - 18

Result Self Studies

Differential Equations Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\dfrac{dy}{dx}=2^{x-y}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac { { 2 }^{ x } }{ { 2 }^{ y } } $$
    $$\Rightarrow \int 2^{y}dy=\int 2^{x}dx+c$$
    $$\dfrac{2^{y}}{log _{2}}=\dfrac{2^{x}}{log_{2}}+c$$
    $$\Rightarrow 2^{x}-2^{y}=c$$
  • Question 2
    1 / -0
    The solution of $$\dfrac{dy}{dx}+\dfrac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}=0$$ is
    Solution
    $$\dfrac{dy}{dx}=\dfrac{-\sqrt{1-y^{2}}}{\sqrt{1-x{2}}}$$
    $$\dfrac{dy}{\sqrt{1-y^{2}}}=\dfrac{-dx}{\sqrt{1-x{2}}}$$
    $$\int \dfrac{dy}{\sqrt{1-y^{2}}}=-\int \dfrac{dx}{\sqrt{1-x{2}}}+c$$
    $$\sin^{-1}y=-\sin^{-1}x+c$$
    $$\Rightarrow \sin^{-1}x+\sin^{-1}y=c$$
  • Question 3
    1 / -0
    Solution of $$\dfrac{dy}{dx}=\dfrac{y+2}{x-1}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{y+2}{x-1}$$
    $$\dfrac{dy}{y+2}=\dfrac{dx}{x-1}$$
    $$\Rightarrow log(y+2)-log(x-1)c$$
    $$\Rightarrow (y+2)=c(x-1)$$
  • Question 4
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{x}{y}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{x}{y}$$
    $$\Rightarrow ydy=xdx$$
    $$\Rightarrow c+\dfrac{y^{2}}{2}=\dfrac{x^{2}}{2}$$
    $$\Rightarrow x^{2}-y^{2}=c$$
  • Question 5
    1 / -0
    The solution of $$e^{ x }\tan ydx+(1-e^{ x })\sec^{ 2 }ydy=0$$ is
    Solution
    $$\dfrac{-e^{x}dx}{-e^{x}+1}= \dfrac{\sec^{2}ydy}{\tan\ y} ;\left [ \begin{matrix}put -(e^{x}-1)= K ; &\tan y = t \\ \Rightarrow -e^{x}dx= dK  &\sec^{2}ydy= dt \end{matrix} \right ]$$
    $$\Rightarrow \log(e^{x}-1)+\log\ c= \log\ tan\ y$$
    $$\Rightarrow -c(e^{x}-1)= \tan\ y$$
    $$\Rightarrow \tan\ y = c(1-e^{x})$$

  • Question 6
    1 / -0
    The solution of $$\tan x\ dy + \tan y\ dx$$ $$=$$ 0
    Solution
    $$tan x dy + tan y dx = 0$$
    $$\Rightarrow \dfrac{-dy}{tan\ y}= \dfrac{dx}{tan\ x}$$
    $$\Rightarrow \dfrac{-cos\ y\ dy}{sin\ y}= \dfrac{cos\ x\ dx}{sin\ x}$$
    $$\Rightarrow \dfrac{-dt}{t}= \dfrac{dk}{k}\ [t= sin\ y ; k= cos\ x]$$
    $$\Rightarrow log\ C= log\ Kt$$
    $$\Rightarrow C= sin\ x\ sin\ y$$
  • Question 7
    1 / -0
    The solution of $$x+y\dfrac{dy}{dx}=5$$ is:
    Solution
    Given, $$x+y\dfrac{dy}{dx}=5$$
    $$\Rightarrow y dy=(5-x)dx$$
    $$\Rightarrow \dfrac{y^{2}}{2}=5x-\dfrac{x^{2}}{2}+c$$
    $$\Rightarrow y^{2}=10 x -x^{2} +c$$
    $$\Rightarrow x^{2}-10x+y^{2}=0+c$$
    $$\Rightarrow x^{2}-10x+y^{2}=c$$
  • Question 8
    1 / -0
    The general solution of the differential equation $$\dfrac{dy}{dx}-\dfrac{2xy}{1+x^{2}}=0$$ is
    Solution
    $$\dfrac{dy}{dx}=\dfrac{2xy}{1+x^{2}}$$
    $$\dfrac{dy}{y}=\dfrac{2x}{1+x^{2}}dx$$
    $$\Rightarrow log y=log C(1+x^{2})$$
    $$y=C(1+x^{2})$$
  • Question 9
    1 / -0
    The solution of $$x^{2}+y^{2}\dfrac{dy}{dx}=4$$ is
    Solution
    $$y^{2}\dfrac{dy}{dx}= 4-x^{2}$$
    $$y^{2}dy = 4dx-x^{2}dx$$
    $$\Rightarrow \dfrac{y^{3}}{3}= 4x-\dfrac{x^3}{3}+ \ ^{c}/_{3}$$
    $$\Rightarrow x^{3}+y^{3}= 12x+c$$
  • Question 10
    1 / -0
    The solution of $$\left ( 1+y^{2} \right )dx=xydy$$ is:
    Solution
    $$(1+y^{2})dx=xydy$$
    $$2{dx}=\dfrac{2xydy}{1+y^{2}}$$
    $$\Rightarrow log c + 2 logx=log(1+y^{2})$$
    $$\Rightarrow log Cx^{2}=log(1+y^{2})$$
    $$\Rightarrow (1+y^{2})=Cx^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now