Self Studies

Differential Equations Test - 19

Result Self Studies

Differential Equations Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\frac{dy}{dx}=e^{x-y}+e^{2logx-y}$$
    Solution
    $$\frac{dy}{dx}= e^{x-y}+e^{2log\ x-y}$$
    $$\Rightarrow e^{y}dy= (e^{x}+x^{2})dx$$
    $$\Rightarrow e^{y}= e^{x}+x^{3}/{3}+c$$
  • Question 2
    1 / -0
    The solution of $$(x^{2}+x)\frac{dy}{dx}=1+2x$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{1+2x}{x^{2}+x}$$
    $$dy=\left ( \dfrac{1+2x}{x^{2}+x} \right )dx$$
    $$\Rightarrow y=log(x^{2}+x)c$$
    $$\Rightarrow e^{y}=c(x^{2}+x)$$

  • Question 3
    1 / -0
    The solution of

    $$(x^{2}-yx^{2})\dfrac{dy}{dx}+(y^{2}+x^{2}y^{2})=0$$
    Solution
    $$\left( x^ 2-yx^ 2 \right) \dfrac { dy }{ dx } +\left( y^ 2+x^ 2y^ 2 \right) =0$$

    $$x^ 2\left( 1-y \right) \dfrac { dy }{ dx } +y^ 2\left( 1+x^ 2 \right) =0$$

    $$x^ 2\left( 1-y \right) \dfrac { dy }{ dx } =-y^ 2\left( 1+x^ 2 \right) $$

    $$\dfrac { \left( 1-y \right)  }{ y^2 } dy=-\dfrac { \left( 1+x^ 2 \right)  }{ x^ 2 } dx$$

    $$\int { \dfrac { \left( 1-y \right)  }{ y^ 2 }  } dy=-\int { \dfrac { \left( 1+x^ 2 \right)  }{ x^ 2 }  } dx$$

    $$\log { y } +\dfrac { 1 }{ y } =x-\dfrac { 1 }{ x } +c$$
    Hence, option 'B' is correct.
  • Question 4
    1 / -0
    Solution of  $$\tan y.\sec^{2}xdx + \tan x.\sec^{2} ydy=0$$ is:
    Solution
    $$tan\ y\ sec^{2}xdx+tan\ x\ sec^{2}y\ dy= 0$$
    $$\Rightarrow \dfrac{sec^{2}x\ dx}{tan\ x}+\dfrac{sec^{2}y}{tan\ y}\ dy= 0$$
    let  $$\begin{matrix}tan \ x = t ;  &tan \ y = k \\\Rightarrow sec^{2}x\ dx = dt  &\Rightarrow sec^{2}y\ dy = k \end{matrix}$$
    $$\Rightarrow \int \dfrac{dt}{t}+\int \dfrac{dk}{k}= c$$
    $$\Rightarrow log \ kt= c$$
    $$\Rightarrow kt= c$$
    $$\Rightarrow tan\ x\ tan\ y= c$$
  • Question 5
    1 / -0
    The solution of $$x\sqrt{1+x^{2}}dx+y\sqrt{1+y^{2}}dy=0$$ is:
    Solution
    $$let x= tan\theta ; y= tan \delta$$

    $$\Rightarrow dx= \sec^{2}\theta\ d \theta ; dy = sec^{2}\delta\ d\ \delta$$

    $$\Rightarrow tan\theta \ sec^{3}\theta d\theta +tan\delta sec^{2}\delta d \delta= 0$$

    let$$\begin{matrix}sec\theta =t ;  &sec \delta  =k \\\Rightarrow sec\theta d \theta = dt \ \ \ \ | &\Rightarrow sec\ \delta\ tan\ \delta\ d\ \delta = dk\end{matrix}$$

    $$\Rightarrow \int t^{2}dt+\int k^{2}dk= c$$

    $$\Rightarrow \dfrac {t^{3}+k^{3}}{3}= c$$

    $$\Rightarrow sec^{3}\theta +sec^{3}\delta= c$$

    $$\Rightarrow (\sqrt{1+x^{2}})^{3}+(\sqrt{1+y^{2}})^{3}= c$$

    $$\Rightarrow (1+x^{2})^{^{3}/_{2}}+(1+y^{2})^{^{3}/_{2}}= c$$
  • Question 6
    1 / -0
    If $$\dfrac{dy}{dx}=x^{2}+1$$ and $$y=12$$ when $$x=3$$. Then the function is:
    Solution
    Given, $$\dfrac {dy}{dx}=x^2+1$$
    Thus $$dy= (x^{2}+1)dx$$
    $$\Rightarrow y= \dfrac{x^{3}}{3}+x+c$$
    Also given, $$(x,y)= (3,12)$$
    $$\Rightarrow 12= 9+3+c$$
    $$\Rightarrow c= 0$$
    Therefor,e the function is $$ 3y= x^{3}+3x$$
    $$\Rightarrow 3(y-x)= x^{3}$$
  • Question 7
    1 / -0
    If $$\dfrac{dy}{dx}=e^{x+y}$$ and at $$x=1;\> y=1$$, then for $$x=-1;\> y$$ ___.
    Solution
    $$\dfrac{dy}{dx}= e^{x}\cdot e^{y}$$
    $$\Rightarrow e^{-y}dy= e^{x}dx$$
    Integrating both sides, we get
    $$\Rightarrow \dfrac{e^{-y}}{-1}=e^{x}-c$$
    $$\Rightarrow e^{x}+e^{-y}= c$$
    Substitute $$ (x,y)= (1,1)$$
    $$\Rightarrow e+\dfrac{1}{e}= c$$
    Now, for $$x= -1$$
    $$\Rightarrow \dfrac{1}{e}+e^{-y}= e+\dfrac{1}{e}$$
    $$\Rightarrow e^{-y}= e$$
    $$\Rightarrow y= -1$$
  • Question 8
    1 / -0
    The solution of $$\dfrac{dy}{dx}=e^{2x-y}+x^{3}e^{-y}$$ is:
    Solution
    $$\dfrac {dy}{dx}= \dfrac{e^{2x}}{e^{y}}+\dfrac{x^{3}}{e^{y}}$$
    $$\Rightarrow e^{y}dy= (e^{2x}+x^{3})dx$$
    $$\Rightarrow e^{y}= \dfrac{e^{2x}}{2}+\dfrac{x^{4}}{4}+\dfrac{c}{4}$$
    $$\Rightarrow 4e^{y}= 2e^{2x}+x^{4}+c$$
  • Question 9
    1 / -0
    Solution of $$(xy^{2}+x)dx+(yx^{2}+y)dy=0$$
    Solution
    $$\Rightarrow x(y^{2}+1)dx+y(x^{2}+1)dy= 0$$
    $$\Rightarrow \left ( \dfrac{2x}{x^{2}+1} \right )dx+\left ( \dfrac{2y}{y^{2}+1} \right )dy= 0$$
    let $$\begin{matrix}t= x^{2}+1 >  &k= y^{2}+1 \\\Rightarrow dt= 2xdx  &\Rightarrow dk=2ydy \end{matrix}$$
    $$\Rightarrow \int \dfrac{dt}{t}+\int \frac{dk}{k}= log \ c$$
    $$\Rightarrow kt = c$$
    $$\Rightarrow (x^{2}+1)(y^{2}+1)= c$$

  • Question 10
    1 / -0
    Solve the differential equation:
    $$\sqrt{1+x^{2}}dx+\sqrt{1+y^{2}}dy=0$$
    Solution
    Given, $$\sqrt{1+x^{2}}dx=-\sqrt{1+y^{2}}.dy$$

    It is known that
    $$\int \sqrt{x^{2}\pm a^{2}}dx=\dfrac{1}{2}x\sqrt{x^{2}\pm a^{2}}\pm\dfrac{a^{2}}{2}ln|x+\sqrt{x^{2}\pm a^{2}}$$

    Applying this formula gives us
     
    $$\int \sqrt{x^{2}+1}.dx=-\int \sqrt{y^{2}+1}.dy$$

    $$\Rightarrow \dfrac{x}{2}\sqrt{x^{2}+1}+\dfrac{1}{2}ln|x+\sqrt{x^{2}+1}|=-[\dfrac{y}{2}\sqrt{y^{2}+1}+\dfrac{1}{2}ln|y+\sqrt{y^{2}+1}|]+C$$

    $$\Rightarrow x\sqrt{x^{2}+1}+y\sqrt{y^{2}+1}+ln|x+\sqrt{x^{2}+1}|+ln|y+\sqrt{y^{2}+1}|=C$$

    $$\Rightarrow x\sqrt{x^{2}+1}+y\sqrt{y^{2}+1}+ln|(x+\sqrt{x^{2}+1})(y+\sqrt{y^{2}+1})|=C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now