Self Studies

Differential Equations Test - 20

Result Self Studies

Differential Equations Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of the curve passing through the point (3, 9) and which satisfies $$y_{1}=x+\dfrac{1}{x^{2}}$$ is:
    Solution
    $$\dfrac{dy}{dx}= x+\ {1}/{x^{2}}$$

    $$dy= xdx+\ {1}/{x^{2}}dx$$

    $$\Rightarrow y=\dfrac{x^{2}}{2}-\ {1}/{x}+c$$

    $$(x_{0},y_{0})= (3,9)$$

    $$\Rightarrow 9= \ {9}/{2}-\ {1}/{3}+c$$

    $${1}/{3}+\ {9}/{2}= c$$

    $$c= \dfrac{29}{6}$$

    $$\Rightarrow y= {x^{2}}/{2}-\ {1}/{x}+\ {29}/{6}$$

    $$\Rightarrow 6xy = 3x^{3}+29x-6$$
  • Question 2
    1 / -0
    The solution of $$\sqrt{1-x^{2}}sin^{-1}xdy+ydx=0$$ is:
    Solution
    $$\sqrt{1-x^{2}}sin^{-1}xdy+ydx= 0$$
    $$\Rightarrow \dfrac{dy}{y}+\dfrac{dx}{sin^{-1}x\sqrt{1-x^{2}}}= 0$$
    let $$ sin^{-1}x= t$$
    $$\Rightarrow  \dfrac{1}{\sqrt{1-x^{2}}}\ dx= dt$$
    $$\Rightarrow  \int \dfrac{dy}{y}+\int \dfrac{dt}{t}= log \ c$$
    $$\Rightarrow log \ yt= log\ c$$
    $$yt= c$$
    $$\Rightarrow y\ sin^{-1}x= c$$
  • Question 3
    1 / -0
    The solution of $$x\sqrt{1-y^{2}}dx+y\sqrt{1-x^{2}}dy=0$$ is:
    Solution
    $$\int -\dfrac{x}{\sqrt{1-x^{2}}}dx=\int \dfrac{-y}{\sqrt{1-y^{2}}}dy+c$$
    $$\Rightarrow -\sqrt{1-x^{2}}=\sqrt{1-y^{2}}+c$$                                 $$\therefore \frac{d}{dx}\sqrt{1-x^{2}}=\dfrac{-x}{\sqrt{1-x^{2}}}$$
    $$\Rightarrow \sqrt{1-x^{2}}+\sqrt{1-y^{2}}=c$$

  • Question 4
    1 / -0
    The solution of $$xdx+ydy=x^{2}ydy-xy^{2}dx$$ is
    Solution
    $$\Rightarrow x\ dx+xy^{2}dx=x^{2}y\ dy-ydy$$
    $$\Rightarrow x(1+y^{2})dx=y(x^{2}-1)dy$$
    $$\Rightarrow \int \dfrac{2x\ dx}{x^{2}-1}\int \dfrac{2y}{1+y^{2}}dy+c$$
    $$\Rightarrow log(x^{2}-1)=log(1+y^{2})+log\ c$$
    $$\Rightarrow (x^{2}-1)=(1+y^{2})c$$
  • Question 5
    1 / -0
    The solution of $$xcos^{2} y(dx) + tan y(dy)=0$$ is:
    Solution
    $$x\ cos^{2}y\ dx+tan\ ydy=0$$
    $$\Rightarrow xdx+tan\ y\ sec^{2}ydy=0$$
    Let tan y = t
    $$\Rightarrow sec^{2}y\ dy=dt$$
    $$\int xdx+\int tdt=c_{1}$$
    $$\Rightarrow \dfrac{x^{2}}{2}+\dfrac{t^{2}}{2}=2c_{1}$$
    $$x^{2}+tan^{2}y=2c_{1}$$
    $$x^{2}+sec^{2}y=2c_{1}+1$$           put $$(2c_{1}+1)=c$$
    $$\Rightarrow x^{2}+sec^{2}y=c$$
  • Question 6
    1 / -0
    The solution of 

    $$3e^{x}\cos^{2}y\ dx+(1-e^{x}) \cot y\ dy=0$$
    Solution
    $$3e^{x}\cos^{2}ydx=(e^{x}-1)\cot\ ydy$$
    $$\Rightarrow \dfrac{3e^{x}}{e^{x}-1}dx=\dfrac{1}{\tan y}\sec^{2}ydy$$
    Put $$e^{x}-1=t$$   ;    $$tan\ y=k$$
    $$\Rightarrow e^{x}dx=dt$$   ;   $$ \sec^{2}ydy=dk$$
    $$\Rightarrow \int \dfrac{3dt}{t}+log\ c=\int \dfrac{dk}{k}$$
    $$\Rightarrow log\ t^{3}c=log\ k$$
    $$\Rightarrow k=ct^{3}$$
    $$\Rightarrow \tan y=c(e^{x}-1)^{3}$$
  • Question 7
    1 / -0
    The solution of $$2xy\dfrac{dy}{dx}=1+y^{2}$$ is:
    Solution
    $$\dfrac{2y\ dy}{1+y^{2}}=dx$$
    $$Let\ t\ =1+y^{2}$$
    $$dt=2ydy$$
    $$\Rightarrow \dfrac{dt}{t}=\dfrac{dx}{x}$$
    $$\Rightarrow log\ t\ =log\ x+log\ c$$
    $$\Rightarrow t=x\ c$$
    $$\Rightarrow (1+y^{2})=cx$$
  • Question 8
    1 / -0
    The solution of $$log\left (\displaystyle \frac{dy}{dx} \right )=ax+by$$
    Solution
    $$log\left( \dfrac { dy }{ dx }  \right) =ax+by\\ \dfrac { dy }{ dx } ={ e }^{ ax+by }\\ \dfrac { dy }{ dx } ={ e }^{ ax }.{ e }^{ by }\\ \int { { e }^{ -by }dy } =\int { { e }^{ ax }dx } +c\\ \Rightarrow \dfrac { { e }^{ -by } }{ -b } =\dfrac { { e }^{ ax } }{ a } +c$$
    $$\Rightarrow c= \dfrac{e^{ax}}{a}+\dfrac{e^{-by}}{b}$$
    $$\Rightarrow be^{ax}+ae^{-by}= k$$
  • Question 9
    1 / -0
    The solution of $$\dfrac{dy}{dx}=x log x$$
    Solution
    $$\Rightarrow \int dy=\int x\ log\ x+c$$
    $$\int x\ log\ x\ dx=x^{2}(log\ x-1)-\int (x\ log\ x-x)dx$$
    $$\Rightarrow 2\int x\ log\ x\ dx=x^{2}(log\ x-1)+\ ^\dfrac{x^2}{2}$$

    $$\int x\ log\ x\ dx=\dfrac{x^{2}(\dfrac{log\ x^{-1}}{2})}{2}$$

    $$\Rightarrow \int dy=\int x\ log\ x+c$$

    $$\Rightarrow y=\dfrac{x^{2}(\dfrac{log\ x-1}{2})}{2}+c$$
    $$\Rightarrow 2y=x^{2}(\dfrac{log\ x-1}{2})+c$$
  • Question 10
    1 / -0
    The solution of $$\frac{dy}{dx}=e^{3x+y}$$ given $$y=0$$ when $$x=0$$ is:
    Solution
    $$\int e\ ^{-y}dy=\int e\ ^{3x}dx+c$$
    $$\Rightarrow \dfrac{e\ ^{-y}}{-1}=\dfrac{e\ ^{3x}}{3}+c$$
    $$\Rightarrow 3e\ ^{-y}+e\ ^{3x}=c$$
    Put $$(x,y)=(0,0)$$
    $$\Rightarrow 3+1=4=c$$
    $$\Rightarrow 3e\ ^{-y}+e\ ^{3x}=4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now