Self Studies

Differential Equations Test - 21

Result Self Studies

Differential Equations Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{x^{2}+4x-9}{x+2}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{(x+2)^{2}-13}{x+2}$$
    $$\dfrac{dy}{dx}=(x+2)-\dfrac{13}{x+2}$$
    $$\int dy=\int (x+2)dx-\int \dfrac{13}{x+2}dx$$
    $$\Rightarrow y=\dfrac{x^{2}+4x}{2}-13\ log(x+2)+c$$
  • Question 2
    1 / -0
    Solution of $$(e^{x}+1)ydy+(y+1)dx=0$$ is:
    Solution
    $$(e^{x}+1)ydy+(y+1)dx=0$$
    $$\Rightarrow \left ( \dfrac{y}{y+1} \right )dy+\left ( \dfrac{e^{-x}}{1+e^{-x}} \right )dx=0$$
    $$\Rightarrow \int \left ( 1-\dfrac{1}{y+1} \right )dy-\int \left ( \dfrac{-e^{-x}}{1+e^{-x}} \right )dx=-c$$
    $$\Rightarrow y-log(y+1)-log (1+e^{-x})=-c$$
    $$y+c=log(y+1)(1+e^{-x})$$
    $$\Rightarrow (y+1)(1+e^{-x})=c\cdot e\ ^{y}$$
  • Question 3
    1 / -0
    The solution of $$(x^{2}-y^{2}x^{2})\dfrac{dy}{dx}+(y^{2}+x^{2}y^{2})=0$$ is:
    Solution
    $$\displaystyle \dfrac { dy }{ dx } =\dfrac { \left( \dfrac { 1 }{ { x }^{ 2 } } +1 \right) { y }^{ 2 } }{ { y }^{ 2 }-1 } \Rightarrow \dfrac { \dfrac { dy }{ dx } \left( { y }^{ 2 }-1 \right)  }{ { y }^{ 2 } } =\dfrac { 1 }{ { x }^{ 2 } } +1$$

    $$\displaystyle \Rightarrow \int { \dfrac { dy  \left( { y }^{ 2 }-1 \right)  }{ { y }^{ 2 } } dx } =\int { \left( \dfrac { 1 }{ { x }^{ 2 } } +1 \right)  } dx$$

    $$\displaystyle \Rightarrow \dfrac { 1 }{ y } +y=-\dfrac { 1 }{ x } +x+c\Rightarrow \left( x-y \right) -\left( \dfrac { 1 }{ x } +\dfrac { 1 }{ y }  \right) =c$$
  • Question 4
    1 / -0
    The solution of $$\frac{dy}{dx}=e^{3x-2y}+x^{2}e^{-2y}$$
    Solution
    $$\dfrac{dy}{dx}=e^{-2y}\left ( e^{3x}+x^{2} \right )$$
    $$\Rightarrow \int e^{2y}dy=\int \left ( e^{3x}+x^{2} \right )dx+c$$
    $$\Rightarrow \dfrac{e^{2}}{2}=\dfrac{e^{3x}}{3}+\ ^{x\ 3}/_{3}+c$$
    $$3e^{2y}=2\left ( e^{3x}+x^{3} \right )+c$$
  • Question 5
    1 / -0
    The solution of $$\frac{dy}{dx}=ysin(2x)$$ given that $$y(0)=0$$
    Solution
    $$\dfrac{dy}{dx}=y sin2x$$

    $$\Rightarrow \int \dfrac{dy}{y}=\int sin2xdx-logC$$

    $$\Rightarrow log|y|=\dfrac{-cos2x}{2}-log C$$

    $$\Rightarrow log|y|=sin^{2}x-log C$$
  • Question 6
    1 / -0
    The solution of $$x\dfrac{dy}{dx}=2\sqrt{y-1}$$ is:
    Solution
    $$\Rightarrow (y-1)^{^{-1}/_{2}}dy=\dfrac{2dx}{x}$$
    $$\Rightarrow \int (y-1)^{^{-1}/_{2}}dy=\dfrac{2dx}{x}$$
    $$\Rightarrow \dfrac{(y-1)^{1}/_{2}}{^{1}/_{2}}=2log\ x+c$$
    $$\Rightarrow 2(y-1)^{^{1}/_{2}}=2log\ x+log\ c$$
    $$\Rightarrow (y-1)^{^{1}/_{2}}=log\ x\ c$$
    $$\Rightarrow e^{\sqrt{y-1}}=cx$$
  • Question 7
    1 / -0
    The solution of $$ydx+xdy=dx+dy$$ is:
    Solution
    $$\Rightarrow ydx+xdy=dx+dy$$
    $$\Rightarrow (y-1)dx+(x-1)dy=0$$
    $$\Rightarrow \dfrac{dy}{(y-1)}=\dfrac{-dx}{x-1}$$
    $$\Rightarrow log(y-1)=-log(x-1)+loge$$
    $$\Rightarrow log(x-1)(y-1)=log c$$
    $$\Rightarrow (x-1)(y-1)=c$$
    $$xy=x+y+c$$
  • Question 8
    1 / -0
    The solution of $$x^{2}\dfrac{dy}{dx}=\sqrt{4-y^{2}}$$ is:
    Solution
    $$\Rightarrow \dfrac{dy}{\sqrt{4-y^{2}}}=\dfrac{dx}{x^{2}}$$
    $$\displaystyle\Rightarrow \int \dfrac{dy}{\sqrt{4-y^{2}}}=\int \dfrac{dx}{x^{2}}+c$$
    $$\Rightarrow sin^{-1}({y/{2}})=\ {-1}/{x}+c$$
    $$\Rightarrow sin^{-1}(\dfrac{y}{2})+{1}/{x}=c$$
  • Question 9
    1 / -0
    The solution of $$xcos^{2}ydx=ycos^{2}xdy$$ is:
    Solution
    $$\Rightarrow \int x\ sec^{2}x\ dx=\int y\ sec^{2}ydy+c$$
    $$\Rightarrow x\ tan\ x-\int tan\ x\ dx=y\ tan\ y-\int tan\ y+c$$
    $$\Rightarrow x\ tan\ x-log\ sec\ x=y\ tan\ y-log\ sec\ y+c$$
    $$\Rightarrow y\ tan\ y-x\ tan\ x+log\frac{cos\ y}{cos\ x}=c$$
  • Question 10
    1 / -0
    The solution of $$y (dx) +(1+x^{2})tan^{-1} x (dy)=0$$
    Solution
    $$\Rightarrow \dfrac{dx}{(tan^{-1}x)(1+x^{2})}+\dfrac{dy}{y}=0$$
    let $$tan^{-1}x=t$$
    $$\Rightarrow \dfrac{1}{1+x^{2}}dx=dt$$
    $$\Rightarrow \int \dfrac{dt}{t}+\int \dfrac{dy}{y}=log\ c$$
    $$\Rightarrow log\ yt=log\ c$$
    $$\Rightarrow yt=c$$
    $$\Rightarrow y\ tan^{-1}x=c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now